Local well-posedness for periodic Benjamin equation with small initial data

被引:5
作者
Shi, Shaoguang [1 ]
Li, Junfeng [2 ,3 ]
机构
[1] Linyi Univ, Dept Math, Linyi 276005, Peoples R China
[2] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2015年
基金
中国国家自然科学基金;
关键词
Benjamin equation; local well-posedness; bilinear estimate; ILL-POSEDNESS; ONO-EQUATION; KDV;
D O I
10.1186/s13661-015-0322-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The local well-posedness of the periodic Benjamin equation with small initial value in H-s(T), s >= -1/2, is given. It is here shown that -1/2 is the lower endpoint to obtain the bilinear estimates which are the crucial steps to obtain the local well-posedness by the Picard iteration.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 28 条
[1]   Coupled Ostrovsky equations for internal waves in a shear flow [J].
Alias, A. ;
Grimshaw, R. H. J. ;
Khusnutdinova, K. R. .
PHYSICS OF FLUIDS, 2014, 26 (12)
[2]   On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations [J].
Alias, A. ;
Grimshaw, R. H. J. ;
Khusnutdinova, K. R. .
CHAOS, 2013, 23 (02)
[3]  
Angulo J., 1999, J DIFFER EQUATIONS, V152, P136, DOI DOI 10.1006/jdeq.1998.3525
[4]   A NEW KIND OF SOLITARY WAVE [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1992, 245 :401-411
[5]  
Bourgain J., 1993, Geom. Funct. Anal., P107
[6]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209, DOI DOI 10.1007/BF01895688
[7]  
CHEN H, 1998, ADV DIFFERENTIAL EQU, V3, P51
[8]   Sharp well-posedness for the Benjamin equation [J].
Chen, W. ;
Guo, Z. ;
Xiao, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6209-6230
[9]   GLOBAL WELL-POSEDNESS AND I METHOD FOR THE FIFTH ORDER KORTEWEG-DE VRIES EQUATION [J].
Chen, Wengu ;
Guo, Zihua .
JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 :121-156
[10]   A Sharp Bilinear Estimate for the Bourgain-Type Space with Application to the Benjamin Equation [J].
Chen, Wengu ;
Xiao, Jie .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (10) :1739-1762