The diophantine equation b2X4-dY2=1

被引:43
作者
Bennett, MA
Walsh, G
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
关键词
Diophantine equations; Pell sequences;
D O I
10.1090/S0002-9939-99-05041-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If b and d are given positive integers with b >1, then we show that the equation of the title possesses at most one solution in positive integers X; Y. Moreover, we give an explicit characterization of this solution, when it exists, in terms of fundamental units of associated quadratic fields. The proof utilizes estimates for linear forms in logarithms of algebraic numbers in conjunction with properties of Pellian equations and the Jacobi symbol and explicit determination of the integer points on certain elliptic curves.
引用
收藏
页码:3481 / 3491
页数:11
相关论文
共 23 条
[11]   Linear forms in two logarithms and interpolation determinants [J].
Laurent, M ;
Mignotte, M ;
Nesterenko, Y .
JOURNAL OF NUMBER THEORY, 1995, 55 (02) :285-321
[12]  
Le MH, 1996, ACTA ARITH, V76, P1
[13]   An extended theory of Lucas' functions [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1930, 31 :419-448
[14]   ON DIOPHANTINE EQUATION AX4-BY2=C (C=1,4) [J].
LJUNGGRE.W .
MATHEMATICA SCANDINAVICA, 1967, 21 (02) :149-&
[15]  
LJUNGGREN W., 1942, ARCH MATH NATURVID, V45, P61
[16]  
LJUNGGREN W, 1942, SKR NORSKE VID AKAD, V1
[17]  
LJUNGGREN W, 1942, AVH NOSKE VID AKAD O, V1
[18]  
Nagell T., 1954, ARK MAT, V3, P51
[19]   SOLVING ELLIPTIC DIOPHANTINE EQUATIONS BY ESTIMATING LINEAR-FORMS IN ELLIPTIC LOGARITHMS [J].
STROEKER, RJ ;
TZANAKIS, N .
ACTA ARITHMETICA, 1994, 67 (02) :177-196
[20]  
Tzanakis N, 1996, ACTA ARITH, V75, P165