Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter : A synthetic experiment

被引:60
作者
Shi, Yuning [1 ]
Davis, Kenneth J. [1 ]
Zhang, Fuqing [1 ]
Duffy, Christopher J. [2 ]
Yu, Xuan [2 ]
机构
[1] Penn State Univ, Dept Meteorol, 415 Walker Bldg, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Civil Engn, University Pk, PA 16802 USA
基金
美国海洋和大气管理局; 美国国家科学基金会;
关键词
parameter estimation; EnKF; hydrologic model; physically based model; land surface model; data assimilation; SEQUENTIAL DATA ASSIMILATION; SCALE DATA ASSIMILATION; SOIL-MOISTURE DATA; AUTOMATIC CALIBRATION; GLOBAL OPTIMIZATION; WATERSHED SCALE; CARBON-DIOXIDE; PART I; UNCERTAINTY; TEMPERATURE;
D O I
10.1002/2013WR014070
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents multiple parameter estimation using multivariate observations via the ensemble Kalman filter (EnKF) for a physically based land surface hydrologic model. A data assimilation system is developed for a coupled physically based land surface hydrologic model (Flux-PIHM) by incorporating EnKF for model parameter and state estimation. Synthetic data experiments are performed at a first-order watershed, the Shale Hills watershed (0.08 km(2)). Six model parameters are estimated. Observations of discharge, water table depth, soil moisture, land surface temperature, sensible and latent heat fluxes, and transpiration are assimilated into the system. The results show that, given a limited number of site-specific observations, the EnKF can be used to estimate Flux-PIHM model parameters. All the estimated parameter values are very close to their true values, with the true values inside the estimated uncertainty range (1 standard deviation spread). The estimated parameter values are not affected by the initial guesses. It is found that discharge, soil moisture, and land surface temperature (or sensible and latent heat fluxes) are the most critical observations for the estimation of those six model parameters. The assimilation of multivariate observations applies strong constraints to parameter estimation, and provides unique parameter solutions. Model results reveal strong interaction between the van Genuchten parameters and , and between land surface and subsurface parameters. The EnKF data assimilation system provides a new approach for physically based hydrologic model calibration using multivariate observations. It can be used to provide guidance for observational system designs, and is promising for real-time probabilistic flood and drought forecasting.
引用
收藏
页码:706 / 724
页数:19
相关论文
共 115 条
[1]   Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
MONTHLY WEATHER REVIEW, 2006, 134 (10) :2951-2970
[2]  
Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
[3]  
2
[4]   Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model [J].
Anderton, S ;
Latron, M ;
Gallart, F .
HYDROLOGICAL PROCESSES, 2002, 16 (02) :333-353
[5]   Parameter estimation using chaotic time series [J].
Annan, JD .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (05) :709-714
[6]  
[Anonymous], [No title captured]
[7]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[8]   Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model [J].
Aubert, D ;
Loumagne, C ;
Oudin, L .
JOURNAL OF HYDROLOGY, 2003, 280 (1-4) :145-161
[9]   Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution [J].
Bailey, R. ;
Bau, D. .
WATER RESOURCES RESEARCH, 2010, 46
[10]   Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems [J].
Baldocchi, D ;
Valentini, R ;
Running, S ;
Oechel, W ;
Dahlman, R .
GLOBAL CHANGE BIOLOGY, 1996, 2 (03) :159-168