Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

被引:250
作者
Fonfara, Ines [1 ,2 ]
Le Rhun, Anais [1 ,2 ]
Chylinski, Krzysztof [1 ,3 ]
Makarova, Kira S. [4 ]
Lecrivain, Anne-Laure [1 ]
Bzdrenga, Janek [1 ]
Koonin, Eugene V. [4 ]
Charpentier, Emmanuelle [1 ,2 ,5 ]
机构
[1] Umea Univ, Dept Mol Biol, Umea Ctr Microbial Res, Lab Mol Infect Med Sweden MIMS, S-90187 Umea, Sweden
[2] Helmholtz Ctr Infect Res, Dept Regulat Infect Biol, D-38124 Braunschweig, Germany
[3] Univ Vienna, Dept Biochem & Cell Biol, Max F Perutz Labs, A-1030 Vienna, Austria
[4] Natl Biotechnol Ctr, Natl Lib Med, NIH, Bethesda, MD 20894 USA
[5] Hannover Med Sch, D-30625 Hannover, Germany
基金
瑞典研究理事会; 奥地利科学基金会;
关键词
COLI RIBONUCLEASE-III; IMMUNE-SYSTEM; GENOME; GENERATION; EVOLUTION; INTERFERENCE; MUTAGENESIS; RESISTANCE; MULTIPLEX; FAMILIES;
D O I
10.1093/nar/gkt1074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA: crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA: Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool.
引用
收藏
页码:2577 / 2590
页数:14
相关论文
共 50 条
  • [21] A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease
    Ivanov, Yury V.
    Shariat, Nikki
    Register, Karen B.
    Linz, Bodo
    Rivera, Israel
    Hu, Kai
    Dudley, Edward G.
    Harvill, Eric T.
    BMC GENOMICS, 2015, 16
  • [22] Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9
    Fu, Becky Xu Hua
    Smith, Justin D.
    Fuchs, Ryan T.
    Mabuchis, Megumu
    Curcuru, Jennifer
    Robb, G. Brett
    Fire, Andrew Z.
    NATURE MICROBIOLOGY, 2019, 4 (05) : 888 - 897
  • [23] CRISPR/Cas9 systems: Delivery technologies and biomedical applications
    Du, Yimin
    Liu, Yanfei
    Hu, Jiaxin
    Peng, Xingxing
    Liu, Zhenbao
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 18 (06)
  • [24] Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease
    Gratz, Scott J.
    Cummings, Alexander M.
    Nguyen, Jennifer N.
    Hamm, Danielle C.
    Donohue, Laura K.
    Harrison, Melissa M.
    Wildonger, Jill
    O'Connor-Giles, Kate M.
    GENETICS, 2013, 194 (04): : 1029 - +
  • [25] Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity
    Borges, Adair L.
    Zhang, Jenny Y.
    Rollins, MaryClare F.
    Osuna, Beatriz A.
    Wiedenheft, Blake
    Bondy-Denomy, Joseph
    CELL, 2018, 174 (04) : 917 - +
  • [26] DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
    Sternberg, Samuel H.
    Redding, Sy
    Jinek, Martin
    Greene, Eric C.
    Doudna, Jennifer A.
    NATURE, 2014, 507 (7490) : 62 - +
  • [27] Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response
    Heler, Robert
    Wright, Addison V.
    Vucelja, Marija
    Bikard, David
    Doudna, Jennifer A.
    Marraffini, Luciano A.
    MOLECULAR CELL, 2017, 65 (01) : 168 - 175
  • [28] Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9
    Chen, Yongchang
    Zheng, Yinghui
    Kang, Yu
    Yang, Weili
    Niu, Yuyu
    Guo, Xiangyu
    Tu, Zhuchi
    Si, Chenyang
    Wang, Hong
    Xing, Ruxiao
    Pu, Xiuqiong
    Yang, Shang-Hsun
    Li, Shihua
    Ji, Weizhi
    Li, Xiao-Jiang
    HUMAN MOLECULAR GENETICS, 2015, 24 (13) : 3764 - 3774
  • [29] Revolutionizing Agriculture: Harnessing CRISPR/Cas9 for Crop Enhancement
    Chovatiya, Ashish
    Rajyaguru, Riddhi
    Tomar, Rukam Singh
    Joshi, Preetam
    INDIAN JOURNAL OF MICROBIOLOGY, 2024, 64 (01) : 59 - 69
  • [30] Application of CRISPR/Cas9 Technology in Industrial Microorganisms
    Zhang, Cai-Da
    Qi, Yong-Hao
    Mi, Ya-Xuan
    Zhang, Yun-Zhi
    Qin, Hao-Jie
    Liu, Dong
    Li, Xiao-Bing
    Ren, Li-Mei
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (07) : 1629 - 1637