Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

被引:100
作者
Decost, Brian L. [1 ]
Jain, Harshvardhan [1 ]
Rollett, Anthony D. [1 ]
Holm, Elizabeth A. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
LOCAL FEATURES; IMAGE; TEXTURE; CLASSIFICATION;
D O I
10.1007/s11837-016-2226-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 39 条
  • [11] Laser additive manufacturing of metallic components: materials, processes and mechanisms
    Gu, D. D.
    Meiners, W.
    Wissenbach, K.
    Poprawe, R.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (03) : 133 - 164
  • [12] Deep learning for visual understanding: A review
    Guo, Yanming
    Liu, Yu
    Oerlemans, Ard
    Lao, Songyang
    Wu, Song
    Lew, Michael S.
    [J]. NEUROCOMPUTING, 2016, 187 : 27 - 48
  • [13] Hinton G. E., 2002, ADV NEURAL INFORM PR, V15, P857, DOI DOI 10.5555/2968618.2968725
  • [14] Jégou H, 2010, PROC CVPR IEEE, P3304, DOI 10.1109/CVPR.2010.5540039
  • [15] Kaufman J. G., 2000, INTRO ALUMINUM ALLOY, P119
  • [16] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [17] MINIMUM CROSS ENTROPY THRESHOLDING
    LI, CH
    LEE, CK
    [J]. PATTERN RECOGNITION, 1993, 26 (04) : 617 - 625
  • [18] An iterative algorithm for minimum cross entropy thresholding
    Li, CH
    Tam, PKS
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (08) : 771 - 776
  • [19] A comprehensive review of current local features for computer vision
    Li, Jing
    Allinson, Nigel M.
    [J]. NEUROCOMPUTING, 2008, 71 (10-12) : 1771 - 1787
  • [20] LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489