Backlund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrodinger equation

被引:14
作者
Yang, Yunqing [1 ,2 ,3 ]
Suzuki, Takashi [2 ]
Wang, Jianyong [4 ]
机构
[1] Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan 316022, Peoples R China
[2] Osaka Univ, Ctr Math Modeling & Data Sci, Osaka 5608531, Japan
[3] Key Lab Oceanog Big Data Min & Applicat Zhejiang, Zhoushan 316022, Peoples R China
[4] Quzhou Univ, Dept Math & Phys, Quzhou 324000, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 95卷
基金
中国国家自然科学基金;
关键词
Nonlocal defocusing coupled nonlinear; Schrodinger equation; Lax pair; Backlund transformation; Soliton; Rational solution; DARBOUX TRANSFORMATION;
D O I
10.1016/j.cnsns.2020.105626
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlocal integrable defocusing coupled nonlinear Schrodinger system from a 3x3 spectral problem is investigated. The Backlund transformation of the nonlocal defocusing coupled nonlinear Schrodinger system is presented from the pseudopotentials derived from the Lax pair. The nonsingular localized wave solutions including the breather wave and exponential-rational solutions are obtained, whose evolutions and dynamical properties are discussed. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 37 条
[11]   Multicomponent integrable wave equations: I. Darboux-dressing transformation [J].
Degasperis, A. ;
Lombardo, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) :961-977
[12]   Multicomponent integrable wave equations: II. Soliton solutions [J].
Degasperis, A. ;
Lombardo, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (38)
[13]   Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrodinger equation [J].
Gadzhimuradov, T. A. ;
Agalarov, A. M. .
PHYSICAL REVIEW A, 2016, 93 (06)
[14]  
Gu C.H., 1990, Soliton Theory and its Application
[15]   Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrodinger Equations [J].
Guo Bo-Ling ;
Ling Li-Ming .
CHINESE PHYSICS LETTERS, 2011, 28 (11)
[16]  
Hasegawa A., 2003, OPTICAL SOLITON THEO
[17]   Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates [J].
Hoefer, M. A. ;
Chang, J. J. ;
Hamner, C. ;
Engels, P. .
PHYSICAL REVIEW A, 2011, 84 (04)
[18]   Darboux transformation and classification of solution for mixed coupled nonlinear Schrodinger equations [J].
Ling, Liming ;
Zhao, Li-Chen ;
Guo, Boling .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 :285-304
[19]   Darboux transformation and multi-dark soliton for N-component nonlinear Schrodinger equations [J].
Ling, Liming ;
Zhao, Li-Chen ;
Guo, Boling .
NONLINEARITY, 2015, 28 (09) :3243-3261
[20]  
MANAKOV SV, 1973, ZH EKSP TEOR FIZ+, V65, P505