Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity

被引:94
作者
Wang, Danny J. J. [1 ]
Jann, Kay [1 ]
Fan, Chang [1 ]
Qiao, Yang [2 ,3 ]
Zang, Yu-Feng [2 ]
Lu, Hanbing [3 ]
Yang, Yihong [3 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Stevens Neuroimaging & Informat Inst, Lab FMRI Technol, Los Angeles, CA 90033 USA
[2] Hangzhou Normal Univ, Ctr Cognit & Brain Disorders, Dept Psychol, Hangzhou, Zhejiang, Peoples R China
[3] NIDA, Neuroimacing Res Branch, NIH, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
multiscale entropy (MSE); complexity; BOLD fMRI; electrophysiology; functional connectivity (FC); DEFAULT MODE NETWORK; RESTING-STATE FMRI; APPROXIMATE ENTROPY; NEURONAL AVALANCHES; ALZHEIMERS-DISEASE; CORTICAL NETWORKS; CEREBRAL-CORTEX; DYNAMICS; CRITICALITY; VARIABILITY;
D O I
10.3389/fnins.2018.00352
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
引用
收藏
页数:14
相关论文
共 111 条
[1]   Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy [J].
Abásolo, D ;
Hornero, R ;
Espino, P ;
Poza, J ;
Sánchez, CI ;
de la Rosa, R .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (08) :1826-1834
[2]   The Brain Activity Map Project and the Challenge of Functional Connectomics [J].
Alivisatos, A. Paul ;
Chun, Miyoung ;
Church, George M. ;
Greenspan, Ralph J. ;
Roukes, Michael L. ;
Yuste, Rafael .
NEURON, 2012, 74 (06) :970-974
[3]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[4]  
[Anonymous], 1981, APPL CTR MANIFOLD TH
[5]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[6]   Signature of consciousness in the dynamics of resting-state brain activity [J].
Barttfeld, Pablo ;
Uhrig, Lynn ;
Sitt, Jacobo D. ;
Sigman, Mariano ;
Jarraya, Bechir ;
Dehaene, Stanislas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (03) :887-892
[7]   Small-world brain networks [J].
Bassett, Danielle Smith ;
Bullmore, Edward T. .
NEUROSCIENTIST, 2006, 12 (06) :512-523
[8]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[9]   The criticality hypothesis: how local cortical networks might optimize information processing [J].
Beggs, John M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1864) :329-343
[10]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159