Bounds on the hop domination number of a tree

被引:44
作者
Ayyaswamy, S. K. [1 ]
Krishnakumari, B. [1 ]
Natarajan, C. [1 ]
Venkatakrishnan, Y. B. [1 ]
机构
[1] SASTRA Univ, Dept Math, Tanjore 613401, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2015年 / 125卷 / 04期
关键词
Hop domination; tree;
D O I
10.1007/s12044-015-0251-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hop dominating set of a graph G is a set D of vertices of G if for every vertex of V(G) \ D, there exists u is an element of D such that d(u,v) = 2. The hop domination number of a graph G, denoted by gamma(h) (G), is the minimum cardinality of a hop dominating set of G. We prove that for every tree T of order n with l leaves and s support vertices we have (n-l-s+4)/3 <= gamma(h) (G) <= n/2, and characterize the trees attaining each of the bounds.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 6 条
[1]  
Chellali M., 2006, Journal of Combinatorial Mathematics and Combinatorial Computing, V58, P189
[2]  
Haynes T.W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[3]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[5]  
Lemanska M., 2004, Discussiones Mathematicae Graph Theory, V24, P165, DOI 10.7151/dmgt.1222
[6]  
Natarajan C, PREPRINT