A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy

被引:162
作者
Bristow, A. D. [1 ]
Karaiskaj, D.
Dai, X.
Zhang, T.
Carlsson, C.
Hagen, K. R.
Jimenez, R.
Cundiff, S. T.
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Fourier transform spectrometers; Michelson interferometers; 2-DIMENSIONAL INFRARED-SPECTROSCOPY; SPECTRAL INTERFEROMETRY; FEMTOSECOND SPECTROSCOPY; ELECTRONIC SPECTROSCOPY; PHOTON-ECHOES; PHASE; SEMICONDUCTORS; STABILIZATION; TECHNOLOGY; PEPTIDES;
D O I
10.1063/1.3184103
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The JILA multidimensional optical nonlinear spectrometer (JILA-MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delay between them while maintaining phase stability. The JILA-MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy, which records the phase of the nonlinear signal as a function of the time delay between several of the excitation pulses. The resulting multidimensional spectrum is obtained from a Fourier transform. This spectrum can resolve, separate, and isolate coherent contributions to the light-matter interactions associated with electronic excitation at optical frequencies. To show the versatility of the JILA-MONSTR, several demonstrations of two-dimensional Fourier-transform spectroscopy are presented, including an example of a phase-cycling scheme that reduces noise. Also shown is a spectrum that accesses two-quantum coherences, where all excitation pulses require phase locking for detection of the signal.
引用
收藏
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
[2]   Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes [J].
Asplund, MC ;
Zanni, MT ;
Hochstrasser, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8219-8224
[3]   Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics [J].
Axt, VM ;
Kuhn, T .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (04) :433-512
[4]   Optical two-dimensional Fourier transform spectroscopy of semiconductors [J].
Borca, CN ;
Zhang, TH ;
Li, XQ ;
Cundiff, ST .
CHEMICAL PHYSICS LETTERS, 2005, 416 (4-6) :311-315
[5]   All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy [J].
Bristow, Alan D. ;
Karaiskaj, Denis ;
Dai, Xingcan ;
Cundiff, Steven T. .
OPTICS EXPRESS, 2008, 16 (22) :18017-18027
[6]   Polarization dependence of semiconductor exciton and biexciton contributions to phase-resolved optical two-dimensional Fourier-transform spectra [J].
Bristow, Alan D. ;
Karaiskaj, Denis ;
Dai, Xingcan ;
Mirin, Richard P. ;
Cundiff, Steven T. .
PHYSICAL REVIEW B, 2009, 79 (16)
[7]   Tunable two-dimensional femtosecond spectroscopy [J].
Brixner, T ;
Stiopkin, IV ;
Fleming, GR .
OPTICS LETTERS, 2004, 29 (08) :884-886
[8]   Coherent two-dimensional optical spectroscopy [J].
Cho, Minhaeng .
CHEMICAL REVIEWS, 2008, 108 (04) :1331-1418
[9]   Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes [J].
Cowan, ML ;
Ogilvie, JP ;
Miller, RJD .
CHEMICAL PHYSICS LETTERS, 2004, 386 (1-3) :184-189
[10]   Coherent spectroscopy of semiconductors [J].
Cundiff, Steven T. .
OPTICS EXPRESS, 2008, 16 (07) :4639-4664