Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped sine-Gordon equation on unbounded domains

被引:7
作者
Wang, Zhaojuan [1 ]
Liu, Yanan [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic strongly damped sine-Gordon equation; Unbounded domains; Random attractor; WAVE-EQUATION; PULLBACK ATTRACTORS;
D O I
10.1016/j.camwa.2017.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the asymptotic behavior of solutions of the non-autonomous stochastic strongly damped sine-Gordon equation driven by multiplicative noise defined on an unbounded domain. First we introduce a continuous cocycle for the equation and establish the pullback asymptotic compactness of solutions. Second we consider the existence and upper semicontinuity of random attractors for the equation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1445 / 1460
页数:16
相关论文
共 23 条
  • [1] RANDOM ATTRACTORS FOR STOCHASTIC FITZHUGH-NAGUMO SYSTEMS DRIVEN BY DETERMINISTIC NON-AUTONOMOUS FORCING
    Adili, Abiti
    Wang, Bixiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 643 - 666
  • [2] [Anonymous], 1983, APPL MATH SCI
  • [3] [Anonymous], 2002, RANDOM PROBABILITY M
  • [4] Arnold L., 1998, Random Dynamical Systems
  • [5] Random attractors for stochastic reaction-diffusion equations on unbounded domains
    Bates, Peter W.
    Lu, Kening
    Wang, Bixiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) : 845 - 869
  • [6] Pullback attractors of nonautonomous and stochastic multivalued dynamical systems
    Caraballo, T
    Langa, JA
    Melnik, VS
    Valero, J
    [J]. SET-VALUED ANALYSIS, 2003, 11 (02): : 153 - 201
  • [7] Chueshov I., 2002, MONOTONE RANDOM SYST
  • [8] Random attractors
    Crauel H.
    Debussche A.
    Flandoli F.
    [J]. Journal of Dynamics and Differential Equations, 1997, 9 (2) : 307 - 341
  • [9] ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS
    CRAUEL, H
    FLANDOLI, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) : 365 - 393
  • [10] Duan J., 2003, COMMUN MATH SCI, V1, P133