Bound state for fractional Schrodinger equation with saturable nonlinearity

被引:9
作者
Wan, Youyan [1 ]
Wang, Zhengping [2 ]
机构
[1] Jianghan Univ, Dept Math, Wuhan 430056, Hubei, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, POB 71010, Wuhan 430071, Peoples R China
关键词
Fractional Schrodinger equation; Bound state; Ground state; Mountain Pass Theorem;
D O I
10.1016/j.amc.2015.10.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of bound state for the following fractional Schrodinger equation (-Delta)(alpha)u + V(x)u = f(u), x is an element of R-N, N >= 3, where (-Delta)(alpha) with alpha is an element of (0,1) is the fractional Laplace operator defined as a pseudo-differential operator with the symbol vertical bar xi vertical bar(2 alpha), V(x) is a positive potential function and the nonlinearity f is saturable, that is, f(u)/u -> l is an element of (0,+infinity) as vertical bar u vertical bar -> +infinity. By using a variant version of Mountain Pass Theorem, we prove that there exists a bound state and ground state of (P) when V and f satisfy suitable assumptions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:735 / 740
页数:6
相关论文
共 50 条
[11]   Existence of positive ground state solutions for fractional Schrodinger equations with a general nonlinearity [J].
Liu, Zhisu ;
Ouyang, Zigen .
APPLICABLE ANALYSIS, 2018, 97 (07) :1154-1171
[12]   A NOTE ON THE EXISTENCE OF A GROUND STATE SOLUTION TO A FRACTIONAL SCHRODINGER EQUATION [J].
Cho, Yonggeun ;
Ozawa, Tohru .
KYUSHU JOURNAL OF MATHEMATICS, 2013, 67 (01) :227-236
[13]   Normalized bound state solutions of fractional Schrodinger equations with general potential [J].
Bao, Xin ;
Lv, Ying ;
Ou, Zeng-Qi .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025, 70 (04) :699-715
[14]   Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation [J].
Bezerra, Flank D. M. ;
Carvalho, Alexandre N. ;
Dlotko, Tomasz ;
Nascimento, Marcelo J. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) :336-360
[15]   GROUND STATE SOLUTIONS TO A CLASS OF FRACTIONAL SCHRODINGER EQUATION WITH HARDY POTENTIAL [J].
Du, Xinsheng ;
Wang, Shanshan .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
[16]   SCHRODINGER EQUATION WITH MULTIPARTICLE POTENTIAL AND CRITICAL NONLINEARITY [J].
Chabrowski, Jan ;
Szulkin, Andrzej ;
Willem, Michel .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (02) :201-211
[17]   Fourier pseudospectral method for fractional stationary Schrodinger equation [J].
Yang, Yin ;
Li, Xueyang ;
Xiao, Aiguo .
APPLIED NUMERICAL MATHEMATICS, 2021, 165 :137-151
[18]   Bound state solutions of the Schrodinger equation and its application to some diatomic molecules [J].
Onate, C. A. ;
Abolarinwa, A. ;
Salawu, S. O. ;
Oladejo, N. K. .
JOURNAL OF MOLECULAR MODELING, 2020, 26 (06)
[19]   Bound State Solution of Radial Schrodinger Equation for the Quark–Antiquark Interaction Potential [J].
Etebong E. Ibekwe ;
Alalibo T. Ngiangia ;
Uduakobong S. Okorie ;
Akpan N. Ikot ;
Hewa Y. Abdullah .
Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 :1191-1204
[20]   PT symmetry in a fractional Schrodinger equation [J].
Zhang, Yiqi ;
Zhong, Hua ;
Belic, Milivoj R. ;
Zhu, Yi ;
Zhong, Weiping ;
Zhang, Yanpeng ;
Christodoulides, Demetrios N. ;
Xiao, Min .
LASER & PHOTONICS REVIEWS, 2016, 10 (03) :526-531