Numerical Solution for Fractional-order Differential Systems with Time Domain and Frequency Domain Methods

被引:0
|
作者
Xiao, Ke [1 ]
Zhou, Shangbo [1 ]
Zhang, Weiwei [1 ]
机构
[1] Chongqing Univ, Dept Comp, Chongqing 400044, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For a general nonlinear fractional-order differential equation, the numerical solution is a good way to approximate the trajectory of such systems. In this paper, a novel algorithm for numerical solution of fractional-order differential equations based on the definition of Grunwald-Letnikov is presented. The results of numerical solution by using the novel method and the frequency domain method are compared, and the limitations of frequency domain method are discussed.
引用
收藏
页码:1263 / 1267
页数:5
相关论文
共 50 条
  • [1] Numerical Solution for Fractional-order Differential Systems with Time Domain and Frequency Domain Methods
    Xiao, Ke
    Zhou, Shangbo
    Zhang, Weiwei
    2008 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEM, 2008, : 742 - 746
  • [3] Identification of the Fractional-Order Systems: A Frequency Domain Approach
    Dzielinski, Andrzej
    Sierociuk, Dominik
    Sarwas, Grzegorz
    Petras, Ivo
    Podlubny, Igor
    Skovranek, Tomas
    ACTA MONTANISTICA SLOVACA, 2011, 16 (01) : 26 - 33
  • [4] Frequency domain stability criteria for fractional-order control systems
    汪纪锋
    Journal of Chongqing University, 2006, (01) : 30 - 35
  • [5] Frequency domain analysis and applications for fractional-order control systems
    Wang Jifeng
    Li Yuankai
    7TH INTERNATIONAL SYMPOSIUM ON MEASUREMENT TECHNOLOGY AND INTELLIGENT INSTRUMENTS, 2005, 13 : 268 - 273
  • [6] Time Domain Solution Analysis and Novel Admissibility Conditions of Singular Fractional-Order Systems
    Zhang, Qing-Hao
    Lu, Jun-Guo
    Ma, Ying-Dong
    Chen, Yang-Quan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (02) : 842 - 855
  • [7] Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain
    Boukal, Y.
    Darouach, M.
    Zasadzinski, M.
    Radhy, N. E.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [8] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2022, 20 : 2159 - 2168
  • [9] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Li, Xu
    Gao, Lifu
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (07) : 2159 - 2168
  • [10] A note on time-domain simulation of feedback fractional-order systems
    Hwang, C
    Leu, JF
    Tsay, SY
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (04) : 625 - 631