Dynamic Learning of SCRF for Feature Selection and Classification of Hyperspectral Imagery

被引:0
|
作者
Zhong, Ping [1 ]
Qian, Zhiming [1 ]
Wang, Runsheng [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, ATR Natl Lab, Changsha 410073, Hunan, Peoples R China
来源
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION | 2012年 / 7626卷
关键词
Conditional random field; classification; feature selection; CRFS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the feature selection and contextual classification of hyperspectral images through the sparse conditional random field (SCRF) model. To relieve the heavy degeneration of classification performance caused by the characteristics of the hyperspectral data and the oversparsity when SCRF selects a small feature subset, we develop a dynamic learning framework to train the SCRF. Under the piecewise training framework, the proposed dynamic learning method of SCRF can be implemented efficiently through separated dynamic sparse trainings of simple classifiers defined by corresponding potentials. Experiments on the real-world hyperspectral images attest to the effectiveness of the proposed method.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [1] Learning Sparse CRFs for Feature Selection and Classification of Hyperspectral Imagery
    Zhong, Ping
    Wang, Runsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (12): : 4186 - 4197
  • [2] Dynamic learning of SMLR for feature selection and classification of hyperspectral data
    Zhong, Ping
    Zhang, Peng
    Wang, Runsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (02) : 280 - 284
  • [3] STRUCTURED SPARSE MODEL BASED FEATURE SELECTION AND CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Qian, Yuntao
    Zhou, Jun
    Ye, Minchao
    Wang, Qi
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1771 - 1774
  • [4] Semi-Supervised Discriminant Feature Selection for Hyperspectral Imagery Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [5] 3-D GaussianGabor Feature Extraction and Selection for Hyperspectral Imagery Classification
    Jia, Sen
    Zhuang, Jiayue
    Deng, Lin
    Zhu, Jiasong
    Xu, Meng
    Zhou, Jun
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 8813 - 8826
  • [6] Band Priority Index: A Feature Selection Framework for Hyperspectral Imagery
    Zhang, Wenqiang
    Li, Xiaorun
    Zhao, Liaoying
    REMOTE SENSING, 2018, 10 (07):
  • [7] Latent representation learning based autoencoder for unsupervised feature selection in hyperspectral imagery
    Wang, Xinxin
    Wang, Zhenyu
    Zhang, Yongshan
    Jiang, Xinwei
    Cal, Zhihua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (09) : 12061 - 12075
  • [8] Optimal Feature Selection for the Classification of Hyperspectral Imagery Using Adaptive Spectral–Spatial Clustering
    S. Chidambaram
    A. Sumathi
    International Journal of Parallel Programming, 2020, 48 : 813 - 832
  • [9] Hyperspectral feature selection for forest classification
    Han, T
    Goodenough, DG
    Dyk, A
    Chen, H
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1471 - 1474
  • [10] A Fast Clonal Selection Algorithm for Feature Selection in Hyperspectral Imagery
    Zhong Yanfei
    Zhang Liangpei
    GEO-SPATIAL INFORMATION SCIENCE, 2009, 12 (03) : 172 - 181