A Unique Population of Regulatory T Cells in Heart Potentiates Cardiac Protection From Myocardial Infarction

被引:165
作者
Xia, Ni [1 ,2 ]
Lu, Yuzhi [1 ,2 ]
Gu, Muyang [1 ,2 ]
Li, Nana [1 ,2 ]
Liu, Meilin [1 ,2 ]
Jiao, Jiao [1 ,2 ]
Zhu, Zhengfeng [1 ,2 ]
Li, Jingyong [1 ,2 ]
Li, Dan [1 ,2 ]
Tang, Tingting [1 ,2 ]
Lv, Bingjie [1 ,2 ]
Nie, Shaofang [1 ,2 ]
Zhang, Min [1 ,2 ]
Liao, Mengyang [1 ,2 ]
Liao, Yuhua [1 ,2 ]
Yang, Xiangping [3 ]
Cheng, Xiang [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Cardiol, 1277 Jiefang Rd, Wuhan 430000, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Med Coll, Key Lab Biol Targeted Therapy, Minist Educ, Wuhan, Peoples R China
[3] Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Immunol, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
collagen; heart rupture; myocardial infarction; osteonectin; T-lymphocytes; regulatory; EXTRACELLULAR-MATRIX; ADIPOSE-TISSUE; ACCUMULATION; DIFFERENTIATION; DYSFUNCTION; FIBROBLAST; PHENOTYPE; MUSCLE; REPAIR; MOUSE;
D O I
10.1161/CIRCULATIONAHA.120.046789
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Regulatory T cells (Tregs), traditionally recognized as potent suppressors of immune response, are increasingly attracting attention because of a second major function: residing in parenchymal tissues and maintaining local homeostasis. However, the existence, unique phenotype, and function of so-called tissue Tregs in the heart remain unclear. Methods: In mouse models of myocardial infarction (MI), myocardial ischemia/reperfusion injury, or cardiac cryoinjury, the dynamic accumulation of Tregs in the injured myocardium was monitored. The bulk RNA sequencing was performed to analyze the transcriptomic characteristics of Tregs from the injured myocardium after MI or ischemia/reperfusion injury. Photoconversion, parabiosis, single-cell T-cell receptor sequencing, and adoptive transfer were applied to determine the source of heart Tregs. The involvement of the interleukin-33/suppression of tumorigenicity 2 axis and Sparc (secreted acidic cysteine-rich glycoprotein), a molecule upregulated in heart Tregs, was further evaluated in functional assays. Results: We showed that Tregs were highly enriched in the myocardium of MI, ischemia/reperfusion injury, and cryoinjury mice. Transcriptomic data revealed that Tregs isolated from the injured hearts had plenty of differentially expressed transcripts in comparison with their lymphoid counterparts, including heart-draining lymphoid nodes, with a phenotype of promoting infarct repair, indicating a unique characteristic. The heart Tregs were accumulated mainly because of recruitment from the circulating Treg pool, whereas local proliferation also contributed to their expansion. Moreover, a remarkable case of repeatedly detected T-cell receptor of heart Tregs, more than that of spleen Tregs, suggests a model of clonal expansion. Besides, Helios(high)Nrp-1(high) phenotype proved the mainly thymic origin of heart Tregs, with a small contribution of phenotypic conversion of conventional CD4(+) T cells, proved by the analysis of T-cell receptor repertoires and conventional CD4(+) T cells adoptive transfer experiments. The interleukin-33/suppression of tumorigenicity 2 axis was essential for sustaining heart Treg populations. Last, we demonstrated that Sparc, which was highly expressed by heart Tregs, acted as a critical factor to protect the heart against MI by increasing collagen content and boosting maturation in the infarct zone. Conclusions: We identified and characterized a phenotypically and functionally unique population of heart Tregs that may lay the foundation to harness Tregs for cardioprotection in MI and other cardiac diseases.
引用
收藏
页码:1956 / 1973
页数:18
相关论文
共 59 条
[1]   Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation [J].
Ali, Niwa ;
Zirak, Bahar ;
Rodriguez, Robert Sanchez ;
Pauli, Mariela L. ;
Hong-An Truong ;
Lai, Kevin ;
Ahn, Richard ;
Corbin, Kaitlin ;
Lowe, Margaret M. ;
Scharschmidt, Tiffany C. ;
Taravati, Keyon ;
Tan, Madeleine R. ;
Ricardo-Gonzalez, Roberto R. ;
Nosbaum, Audrey ;
Bertolini, Marta ;
Liao, Wilson ;
Nestle, Frank O. ;
Paus, Ralf ;
Cotsarelis, George ;
Abbas, Abul K. ;
Rosenblum, Michael D. .
CELL, 2017, 169 (06) :1119-+
[2]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[3]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[4]   A Distinct Function of Regulatory T Cells in Tissue Protection [J].
Arpaia, Nicholas ;
Green, Jesse A. ;
Moltedo, Bruno ;
Arvey, Aaron ;
Hemmers, Saskia ;
Yuan, Shaopeng ;
Treuting, Piper M. ;
Rudensky, Alexander Y. .
CELL, 2015, 162 (05) :1078-1089
[5]   SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity [J].
Barker, TH ;
Baneyx, G ;
Cardó-Vila, M ;
Workman, GA ;
Weaver, M ;
Menon, PM ;
Dedhar, S ;
Rempel, SA ;
Arap, W ;
Pasqualini, R ;
Vogel, V ;
Sage, EH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (43) :36483-36493
[6]   Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells [J].
Benakis, Corinne ;
Brea, David ;
Caballero, Silvia ;
Faraco, Giuseppe ;
Moore, Jamie ;
Murphy, Michelle ;
Sita, Giulia ;
Racchumi, Gianfranco ;
Lingo, Lilan ;
Pamer, Eric G. ;
Iadecola, Costantino ;
Anrather, Josef .
NATURE MEDICINE, 2016, 22 (05) :516-523
[7]   Induced CD4+Foxp3+ Regulatory T Cells in Immune Tolerance [J].
Bilate, Angelina M. ;
Lafaille, Juan J. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 30, 2012, 30 :733-758
[8]   A Special Population of Regulatory T Cells Potentiates Muscle Repair [J].
Burzyn, Dalia ;
Kuswanto, Wilson ;
Kolodin, Dmitriy ;
Shadrach, Jennifer L. ;
Cerletti, Massimiliano ;
Jang, Young ;
Sefik, Esen ;
Tan, Tze Guan ;
Wagers, Amy J. ;
Benoist, Christophe ;
Mathis, Diane .
CELL, 2013, 155 (06) :1282-1295
[9]   Regulatory T cells in nonlymphoid tissues [J].
Burzyn, Dalia ;
Benoist, Christophe ;
Mathis, Diane .
NATURE IMMUNOLOGY, 2013, 14 (10) :1007-1013
[10]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+