Traps and trions as origin of magnetoresistance in organic semiconductors

被引:49
作者
Cox, M. [1 ]
Janssen, P.
Zhu, F.
Koopmans, B.
机构
[1] Eindhoven Univ Technol, Ctr NanoMat, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 03期
关键词
CONJUGATED POLYMERS; ROOM-TEMPERATURE; TRANSPORT; DEVICES; EXCITONS; FILMS;
D O I
10.1103/PhysRevB.88.035202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The large effect of a small magnetic field on the current, magnetoconductance (MC), in organic semiconductors-so-called organic magnetoresistance-has puzzled the field of organic spintronics during the last decade. Although the microscopic mechanisms regarding spin mixing are well understood by now, it is still unknown which pairs of spin carrying particles are influencing the current in such a drastic manner. Here, a model for the MC is presented based on the spin selective formation of metastable trions from triplet exciton-polaron pairs. Additionally, the magnetic-field and voltage dependence of the MC are experimentally investigated in materials showing large effects. Using a combination of analytical and numerical calculations, it is shown that the MC is perfectly described by a process in which trions are created at polaron trap sites.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Charged Frenkel excitons in organic crystals [J].
Agranovich, VM ;
Basko, DM ;
Schmidt, K ;
LaRocca, GC ;
Bassani, F ;
Forrest, S ;
Leo, K ;
Lidzey, D .
CHEMICAL PHYSICS, 2001, 272 (2-3) :159-169
[2]   Electron-hole pair mechanism for the magnetic field effect in organic light emitting diodes based on poly(paraphenylene vinylene) [J].
Bagnich, S. A. ;
Niedermeier, U. ;
Melzer, C. ;
Sarfert, W. ;
von Seggern, H. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (11)
[3]   Differentiation between polaron-pair and triplet-exciton polaron spin-dependent mechanisms in organic light-emitting diodes by coherent spin beating [J].
Baker, W. J. ;
McCamey, D. R. ;
van Schooten, K. J. ;
Lupton, J. M. ;
Boehme, C. .
PHYSICAL REVIEW B, 2011, 84 (16)
[4]   Interface-limited injection in amorphous organic semiconductors [J].
Baldo, MA ;
Forrest, SR .
PHYSICAL REVIEW B, 2001, 64 (08)
[5]   Inversion of magnetoresistance in organic semiconductors [J].
Bergeson, J. D. ;
Prigodin, V. N. ;
Lincoln, D. M. ;
Epstein, A. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[6]   Separating positive and negative magnetoresistance in organic semiconductor devices [J].
Bloom, F. L. ;
Wagemans, W. ;
Kemerink, M. ;
Koopmans, B. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[7]   Bipolaron mechanism for organic magnetoresistance [J].
Bobbert, P. A. ;
Nguyen, T. D. ;
van Oost, F. W. A. ;
Koopmans, B. ;
Wohlgenannt, M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[8]   Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J].
Burrows, PE ;
Shen, Z ;
Bulovic, V ;
McCarty, DM ;
Forrest, SR ;
Cronin, JA ;
Thompson, ME .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (10) :7991-8006
[9]   Effects of Gaussian disorder on charge carrier transport and recombination in organic semiconductors [J].
Coehoorn, R. ;
Bobbert, P. A. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (12) :2354-2377
[10]   The influence of device physics on organic magnetoresistance [J].
Cox, M. ;
Janssen, P. ;
Wouters, S. H. W. ;
van der Heijden, E. H. M. ;
Kemerink, M. ;
Koopmans, B. .
SYNTHETIC METALS, 2013, 173 :10-15