Analyticity and asymptotics for the Stokes solutions in a weighted space

被引:21
作者
Bae, HO [1 ]
机构
[1] Ajou Univ, Dept Math, Suwon 441749, South Korea
关键词
D O I
10.1016/S0022-247X(02)00011-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first show the analyticity of Stokes operator in a weighted space L-gamma(p)(R-+(3)). We also show that the Hodge decomposition holds on L-gamma(p) (R-+(3)). Then, we estimate the asymptotic behavior of the Stokes solutions in space and time directions. For 1 < r < q < infinity, if t is large enough, then (integral(R3+)\u(x,t)\W-q(x)(gammaq)dx)(1/q) less than or equal to C/(t)(3/2)(1/r - 1/q) +1/2-gamma/2' where gamma is a constant with 0 less than or equal to y < 3/r' if w(x) = 1 + \x\, and 0 < y < 1/r' if w(x) = 1 + x(n). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:149 / 171
页数:23
相关论文
共 14 条
[1]  
[Anonymous], 1995, NAVIER STOKES EQUATI
[2]  
BAE HO, IN PRESS MATH Z
[3]   L2 DECAY FOR THE NAVIER-STOKES FLOW IN HALFSPACES [J].
BORCHERS, W ;
MIYAKAWA, T .
MATHEMATISCHE ANNALEN, 1988, 282 (01) :139-155
[4]  
Giga Y., 1989, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V36, P103
[5]  
GIGA Y, 1981, MATH Z, V178, P279
[6]   LQ-LR ESTIMATES FOR SOLUTIONS OF THE NONSTATIONARY STOKES EQUATIONS IN AN EXTERIOR DOMAIN AND THE NAVIER-STOKES INITIAL-VALUE PROBLEMS IN LQ SPACES [J].
IWASHITA, H .
MATHEMATISCHE ANNALEN, 1989, 285 (02) :265-288
[7]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[8]  
MCCRACKEN M, 1981, SIAM J MATH ANAL, V12
[9]  
MIYAKAWA T, SPACE TIME DECAY PRO
[10]  
Schonbek M., 1991, J. Amer. Math. Soc., V4, P423, DOI 10.2307/2939262