Electrochemical Investigation on the Inhibitive Nature of Barrier Layer on the Growth Rate of TiO2 Nanotube Arrays

被引:11
作者
Raj, C. Clement [1 ]
Neelakantan, Lakshman [1 ]
机构
[1] IIT Madras, Dept Met & Mat Engn, Corros Engn & Mat Electrochem Lab, Madras, Tamil Nadu, India
关键词
ANODIC GROWTH; ANODIZATION; CRYSTALLINITY; NANOMATERIALS; FABRICATION; MORPHOLOGY; LENGTH;
D O I
10.1149/2.0021811jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical anodization is a cost effective and easy to scale-up method for the fabrication of TiO2 nanotube arrays. In this article we have elucidated the role of barrier layer on nanotube growth by analyzing nanotube arrays fabricated at different anodization times (1 minute - 24 hours). During the growth process, at the initial stage, a very fast growth (similar to 1.5 mu mmin(-1)) is observed, which slows down as time progresses. The growth efficiency has been calculated by using the charge consumed for each specimen anodized for different time duration. The impact of barrier layer on the growth of the nanotube arrays has been studied using Electrochemical Impedance Spectroscopy (EIS) and Mott-Schottky (M-S) analysis. The thickness of the barrier layers was calculated from the barrier layer capacitance values. The minimum barrier layer resistance of 375 Omega paves the way for the very high growth rate obtained. The decrease in the carrier densities or defects (from 42 x 10(19) to 1.86 x 10(19) cm(-3)) with increase in the anodization duration limits the ion transfer rate. Thinner barrier layers (similar to 30 nm) with higher carrier density and lower resistance ensures rapid growth rate of nanotube arrays during anodization. (C) 2018 The Electrochemical Society.
引用
收藏
页码:E521 / E526
页数:6
相关论文
共 50 条
[21]   Relation between morphology and conductivity in TiO2 nanotube arrays: an electrochemical impedance spectrometric investigation [J].
Pu, P. ;
Cachet, H. ;
Ngaboyamahina, E. ;
Sutter, E. M. M. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (03) :817-828
[22]   Preparation of TiO2 Nanotube and Nanotube/Nanowire Composite Arrays by Temperature Control [J].
Cai Fang-Gong ;
Yang Feng ;
Zhao Yong ;
Cheng Cui-Hua .
CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2011, 27 (03) :504-508
[23]   TiO2 Nanotube Arrays Fabricated by Anodization [J].
Wang Daoai ;
Liu Ying ;
Wang Chengwei ;
Zhou Feng .
PROGRESS IN CHEMISTRY, 2010, 22 (06) :1035-1043
[24]   The role of barrier layer temperature in the formation of long and small-diameter TiO2 nanotube arrays [J].
Vajihe Asgari ;
Mohammad Noormohammadi ;
Abdolali Ramazani ;
Mohammad Almasi Kashi .
Journal of Porous Materials, 2020, 27 :1613-1621
[25]   Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization [J].
Liu, Guohua ;
Du, Kang ;
Wang, Kaiying .
APPLIED SURFACE SCIENCE, 2016, 388 :313-320
[26]   Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays [J].
Li, Yinchang ;
Ma, Qun ;
Han, Jun ;
Ji, Lili ;
Wang, Junxia ;
Chen, Jieyu ;
Wang, Yongqian .
APPLIED SURFACE SCIENCE, 2014, 297 :103-108
[27]   Fast Growth of Highly Ordered TiO2 Nanotube Arrays on Si Substrate under High-Field Anodization [J].
Song, Jingnan ;
Zheng, Maojun ;
Zhang, Bin ;
Li, Qiang ;
Wang, Faze ;
Ma, Liguo ;
Li, Yanbo ;
Zhu, Changqing ;
Ma, Li ;
Shen, Wenzhong .
NANO-MICRO LETTERS, 2017, 9 (02)
[28]   Gradient TiO2 nanotube arrays [J].
Cheng, Jian-Wen ;
Tsang, Chun Kwan ;
Liang, Fengxia ;
Cheng, Hua ;
Li, Yang Yang .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 6, 2011, 8 (06) :1812-1814
[29]   The Preparation of TiO2 Nanotube Arrays [J].
Pang Laixue ;
Cuan Pengfei ;
Shi Hong ;
Tang Xinde .
EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 :1779-+
[30]   Formation Mechanism of Self-Organized TiO2 Nanotube Arrays [J].
Su, Lusheng ;
Gan, Yong X. ;
Lawrence, Joseph G. .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (05) :520-529