Regular graphs are antimagic

被引:0
作者
Berczi, Kristof [1 ]
Bernath, Attila [1 ]
Vizer, Mate [2 ]
机构
[1] MTA ELTE Egervary Res Grp, Budapest, Hungary
[2] MTA Alfred Renyi Inst Math, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
antimagic labelings; regular graphs;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An undirected simple graph G = (V, E) is called antimagic if there exists an injective function f : E -> {1,...,vertical bar E vertical bar} such that Sigma(e is an element of E(u)) f(e) not equal Sigma(e is an element of E(v)) f(e) for any pair of different nodes u, v is an element of V. In this note we prove - with a slight modification of an argument of Cranston et al. - that k-regular graphs are antimagic for k >= 2.
引用
收藏
页数:6
相关论文
共 6 条
[1]  
Berczi K., 2015, ARXIV150503717
[2]   Antimagic Labeling of Regular Graphs [J].
Chang, Feihuang ;
Liang, Yu-Chang ;
Pan, Zhishi ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2016, 82 (04) :339-349
[3]   Regular Graphs of Odd Degree Are Antimagic [J].
Cranston, Daniel W. ;
Liang, Yu-Chang ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2015, 80 (01) :28-33
[4]  
Gallian J. A., 2014, ELECT J COMBINATORIC, V6
[5]  
Hartsfield N., 1990, PEARLS GRAPH THEORY
[6]  
Liang Y.-C., 2013, THESIS NATL SUN YAT