Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition

被引:44
作者
Bagchi, B
Quesne, C
机构
[1] Univ Libre Brussels, B-1050 Brussels, Belgium
[2] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
关键词
non-Hermitian Hamiltonians; PT symmetry; pseudo-Hermiticity; supersymmetric quantum mechanics;
D O I
10.1016/S0375-9601(02)00929-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss certain features of pseudo-Hermiticity and weak pseudo-Hermiticity conditions and point out that, contrary to a recent claim, there is no inconsistency if the correct orthogonality condition is used for the class of pseudo-Hermitian, PT-symmetric Hamiltonians of the type H-beta = [p + ibetav (x)](2)/2m + V (x). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:173 / 176
页数:4
相关论文
共 18 条
[1]   Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians [J].
Ahmed, Z .
PHYSICS LETTERS A, 2002, 294 (5-6) :287-291
[2]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential (vol A282, pg 343, 2001) [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 287 (3-4) :295-296
[3]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[4]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[5]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[6]   Generalized continuity equation and modified normalization in PT-symmetric quantum mechanics [J].
Bagchi, B ;
Quesne, C ;
Znojil, M .
MODERN PHYSICS LETTERS A, 2001, 16 (31) :2047-2057
[7]  
BAGCHI B, IN PRESS PHYS LETT A
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[10]  
Bessis D ., 1992, UNPUB