A new generalization of the KMOV cryptosystem

被引:8
作者
Boudabra, Maher [1 ]
Nitaj, Abderrahmane [2 ]
机构
[1] Univ Monastir, Monastir, Tunisia
[2] Univ Caen Normandie, Lab Math Nicolas Oresme, Caen, France
关键词
KMOV cryptosystem; Elliptic curves; Prime power modulus; ELLIPTIC-CURVES; RSA;
D O I
10.1007/s12190-017-1103-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The KMOV scheme is a public key cryptosystem based on an RSA modulus n = pq where p and q are large prime numbers with p equivalent to q equivalent to 2 (mod 3).It uses the points of an elliptic curve with equation y(2) equivalent to x(3) + b (mod n). In this paper, we propose a generalization of the KMOV cryptosystem with a prime power modulus of the form n = p(r)q(s) and study its resistance to the known attacks.
引用
收藏
页码:229 / 245
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 1994, Lecture Notes in Computer Science
[2]  
Boneh D, 1999, LECT NOTES COMPUT SC, V1592, P1
[3]  
Boneh D., 1999, Advances in Cryptology - CRYPTO'99. 19th Annual International Cryptology Conference. Proceedings, P326
[4]  
Boneh D., 1999, NOT AM MATH SOC, V46, P203
[5]  
FUJIOKA A, 1991, LECT NOTES COMPUT SC, V547, P446
[6]  
Hinek MJ., 2010, CRYPTANALYSIS RSA IT
[7]  
Ibrahimpasic B., 2008, CENTR EUR C INF INT
[8]  
Ireland K., 1990, CLASSICAL INTRO MODE
[9]  
Joux A., 2014, Open Problems in Mathematics and Computational Science, P5, DOI [DOI 10.1007/978-3-319-10683-02, 10.1007/978-3-319-10683-0_2.%2023, DOI 10.1007/978-3-319-10683-0_2.23]
[10]  
Kolbitz N., 1987, MATH COMPUT, V48, P203, DOI DOI 10.1090/S0025-5718-1987-0866109-5