Enhancing remote sensing image retrieval using a triplet deep metric learning network

被引:78
作者
Cao, Rui [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Zhang, Qian [1 ,2 ]
Zhu, Jiasong [3 ,4 ,5 ]
Li, Qing [3 ,4 ,5 ,6 ,7 ,8 ]
Li, Qingquan [3 ,4 ,5 ]
Liu, Bozhi [6 ,7 ]
Qiu, Guoping [6 ,7 ,8 ]
机构
[1] Univ Nottingham Ningbo China, Int Doctoral Innovat Ctr, Ningbo, Zhejiang, Peoples R China
[2] Univ Nottingham Ningbo China, Sch Comp Sci, Ningbo, Zhejiang, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen, Peoples R China
[4] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen, Peoples R China
[5] Shenzhen Univ, Key Lab Geoenvironm Monitoring Coastal Zone, Minist Nat Resources, Shenzhen, Peoples R China
[6] Shenzhen Univ, Coll Informat Engn, Shenzhen, Peoples R China
[7] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen, Peoples R China
[8] Univ Nottingham, Sch Comp Sci, Nottingham, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
INVARIANT;
D O I
10.1080/2150704X.2019.1647368
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the rapid growing of remotely sensed imagery data, there is a high demand for effective and efficient image retrieval tools to manage and exploit such data. In this letter, we present a novel content-based remote sensing image retrieval (RSIR) method based on Triplet deep metric learning convolutional neural network (CNN). By constructing a Triplet network with metric learning objective function, we extract the representative features of the images in a semantic space in which images from the same class are close to each other while those from different classes are far apart. In such a semantic space, simple metric measures such as Euclidean distance can be used directly to compare the similarity of images and effectively retrieve images of the same class. We also investigate a supervised and an unsupervised learning methods for reducing the dimensionality of the learned semantic features. We present comprehensive experimental results on two public RSIR datasets and show that our method significantly outperforms state-of-the-art.
引用
收藏
页码:740 / 751
页数:12
相关论文
共 21 条
[1]   Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification [J].
Cheng, Gong ;
Li, Zhenpeng ;
Han, Junwei ;
Yao, Xiwen ;
Guo, Lei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11) :6712-6722
[2]   Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Xu, Dong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) :265-278
[3]   When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs [J].
Cheng, Gong ;
Yang, Ceyuan ;
Yao, Xiwen ;
Guo, Lei ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05) :2811-2821
[4]   Remote Sensing Image Scene Classification: Benchmark and State of the Art [J].
Cheng, Gong ;
Han, Junwei ;
Lu, Xiaoqiang .
PROCEEDINGS OF THE IEEE, 2017, 105 (10) :1865-1883
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]  
He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[7]  
Hermans A., 2017, ARXIV170307737CS
[8]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[9]   Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images [J].
Li, Yansheng ;
Zhang, Yongjun ;
Huang, Xin ;
Yuille, Alan L. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 :182-196
[10]   Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks [J].
Li, Yansheng ;
Zhang, Yongjun ;
Huang, Xin ;
Zhu, Hu ;
Ma, Jiayi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02) :950-965