共 50 条
Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
被引:336
作者:
Gobert, Christian
[1
]
Reutzel, Edward W.
[2
]
Petrich, Jan
[3
]
Nassar, Abdalla R.
[2
]
Phoha, Shashi
[3
]
机构:
[1] Penn State Univ, Dept Mech Engn, State Coll, PA 16804 USA
[2] Penn State Univ, Appl Res Lab, POB 30,Mail Stop 4420D, State Coll, PA 16804 USA
[3] Penn State Univ, Appl Res Lab, POB 30,Mail Stop 5700D, State Coll, PA 16804 USA
关键词:
Additive manufacturing;
Powder bed fusion;
Process monitoring;
Machine learning;
Experimental validation;
FATIGUE BEHAVIOR;
POROSITY;
D O I:
10.1016/j.addma.2018.04.005
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Process monitoring in additive manufacturing (AM) is a crucial component in the mission of broadening AM industrialization. However, conventional part evaluation and qualification techniques, such as computed tomography (CT), can only be utilized after the build is complete, and thus eliminate any potential to correct defects during the build process. In contrast to post-build CT, in situ defect detection based on in situ sensing, such as layerwise visual inspection, enables the potential for in-process re-melting and correction of detected defects and thus facilitates in-process part qualification. This paper describes the development and implementation of such an in situ defect detection strategy for powder bed fusion (PBF) AM using supervised machine learning. During the build process, multiple images were collected at each build layer using a high resolution digital single-lens reflex (DSLR) camera. For each neighborhood in the resulting layerwise image stack, multi-dimensional visual features were extracted and evaluated using binary classification techniques, i.e. a linear support vector machine (SVM). Through binary classification, neighborhoods are then categorized as either a flaw, i.e. an undesirable interruption in the typical structure of the material, or a nominal build condition. Ground truth labels, i.e. the true location of flaws and nominal build areas, which are needed to train the binary classifiers, were obtained from post-build high-resolution 3D CT scan data. In CT scans, discontinuities, e.g. incomplete fusion, porosity, cracks, or inclusions, were identified using automated analysis tools or manual inspection. The xyz locations of the CT data were transferred into the layerwise image domain using an affine transformation, which was estimated using reference points embedded in the part. After the classifier had been properly trained, in situ defect detection accuracies greater than 80% were demonstrated during cross-validation experiments.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 50 条