SAMPLE: Surface structure search enabled by coarse graining and statistical learning

被引:27
|
作者
Hoermann, Lukas [1 ]
Jeindl, Andreas [1 ]
Egger, Alexander T. [1 ]
Scherbela, Michael [1 ]
Hofmann, Oliver T. [1 ]
机构
[1] Graz Univ Technol, Inst Solid State Phys, NAWI Graz, Petersgasse 16, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Hybrid organic/inorganic interface; Bayesian linear regression; Polymorphism; Surface induced phase; First principles simulation; Naphthalene on Cu(111); CRYSTAL-STRUCTURE; MECHANICAL-PROPERTIES; GLOBAL OPTIMIZATION; NAPHTHALENE; POLYMORPHISM; PREDICTION; CLUSTERS;
D O I
10.1016/j.cpc.2019.06.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this publication we introduce SAMPLE, a structure search approach for commensurate organic monolayers on inorganic substrates. Such monolayers often show rich polymorphism with diverse molecular arrangements in differently shaped unit cells. Determining the different commensurate polymorphs from first principles poses a major challenge due to the large number of possible molecular arrangements. To meet this challenge, SAMPLE employs coarse-grained modeling in combination with Bayesian linear regression to efficiently map the minima of the potential energy surface. In addition, it uses ab initio thermodynamics to generate phase diagrams. Using the example of naphthalene on Cu(111), we comprehensively explain the SAMPLE approach and demonstrate its capabilities by comparing the predicted with the experimentally observed polymorphs. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [11] Statistical coarse graining as an approach to multiscale problems in magnetism (invited)
    Dobrovitski, VV
    Katsnelson, MI
    Harmon, BN
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 6432 - 6437
  • [12] Statistical coarse-graining as an approach to multiscale problems in magnetism
    Dobrovitski, VV
    Katsnelson, MI
    Harmon, BN
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 221 (03) : L235 - L242
  • [13] Author Correction: A machine learning enabled hybrid optimization framework for efficient coarse-graining of a model polymer
    Zakiya Shireen
    Hansani Weeratunge
    Adrian Menzel
    Andrew W. Phillips
    Ronald G. Larson
    Kate Smith-Miles
    Elnaz Hajizadeh
    npj Computational Materials, 9
  • [14] Coarse-Graining Approaches in Univariate Multiscale Sample and Dispersion Entropy
    Azami, Hamed
    Escudero, Javier
    ENTROPY, 2018, 20 (02):
  • [15] Asymmetry, Abstraction, and Autonomy: Justifying Coarse-Graining in Statistical Mechanics
    Robertson, Katie
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2020, 71 (02): : 547 - 579
  • [16] Small surface energy, coarse-graining, and selection of microstructure
    Kohn, RV
    Otto, F
    PHYSICA D, 1997, 107 (2-4): : 272 - 289
  • [17] Manifold Coarse Graining for Online Semi-supervised Learning
    Farajtabar, Mehrdad
    Shaban, Amirreza
    Rabiee, Hamid Reza
    Rohban, Mohammad Hossein
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2011, 6911 : 391 - 406
  • [18] Coarse-graining the structure of polycyclic aromatic hydrocarbons clusters
    Hernandez-Rojas, J.
    Calvo, F.
    Wales, D. J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (20) : 13736 - 13740
  • [19] Quantum decimation in Hilbert space: Coarse graining without structure
    Singh, Ashmeet
    Carroll, Sean M.
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [20] Structure-based coarse-graining in liquid slabs
    Jochum, Mara
    Andrienko, Denis
    Kremer, Kurt
    Peter, Christine
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (06):