Rational Assembly of Optoplasmonic Hetero-nanoparticle Arrays with Tunable Photonic-Plasmonic Resonances

被引:38
作者
Hong, Yan [1 ,2 ]
Qiu, Yue [1 ,2 ]
Chen, Tianhong [1 ,2 ]
Reinhard, Bjoern M. [1 ,2 ]
机构
[1] Boston Univ, Dept Chem, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
nanoparticle arrays; hybrid materials; metamaterials; photonic crystals; gold; titanium dioxide; plasmonics; ENHANCED RAMAN-SPECTROSCOPY; METAL NANOPARTICLE; CLUSTER ARRAYS; BAND-GAPS; GOLD; SCATTERING; CRYSTALS; SERS; NANOSTRUCTURES; INTEGRATION;
D O I
10.1002/adfm.201301837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic and dielectric nanoparticles (NPs) have synergistic electromagnetic properties but their positioning into morphologically defined hybrid arrays with novel optical properties still poses significant challenges. A template-guided self-assembly strategy is introduced for the positioning of metallic and dielectric NPs at pre-defined lattice sites. The chemical assembly approach facilitates the fabrication of clusters of metallic NPs with interparticle separations of only a few nanometers in a landscape of dielectric NPs positioned hundreds of nanometers apart. This approach is used to generate two-dimensional interdigitated arrays of 250 nm diameter TiO2 NPs and clusters of electromagnetically strongly coupled 60 nm Au NPs. The morphology-dependent near- and far-field responses of the resulting multiscale optoplasmonic arrays are analyzed in detail. Elastic and inelastic scattering spectroscopy in combination with electromagnetic simulations reveal that optoplasmonic arrays sustain delocalized photonic-plasmonic modes that achieve a cascaded E-field enhancement in the gap junctions of the Au NP clusters and simultaneously increase the E-field intensity throughout the entire array.
引用
收藏
页码:739 / 746
页数:8
相关论文
共 48 条
[1]   Demonstration of Efficient On-Chip Photon Transfer in Self-Assembled Optoplasmonic Networks [J].
Ahn, Wonmi ;
Hong, Yan ;
Boriskina, Svetlana V. ;
Reinhardt, Bjoern M. .
ACS NANO, 2013, 7 (05) :4470-4478
[2]   Photonic-Plasmonic Mode Coupling in On-Chip Integrated Optoplasmonic Molecules [J].
Ahn, Wonmi ;
Boriskina, Svetlana V. ;
Hong, Yan ;
Reinhard, Bjoern M. .
ACS NANO, 2012, 6 (01) :951-960
[3]   Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials [J].
Alaeian, Hadiseh ;
Dionne, Jennifer A. .
OPTICS EXPRESS, 2012, 20 (14) :15781-15796
[4]   Collective resonances in gold nanoparticle arrays [J].
Auguie, Baptiste ;
Barnes, William L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[5]   Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling [J].
Barth, Michael ;
Schietinger, Stefan ;
Fischer, Sabine ;
Becker, Jan ;
Nuesse, Nils ;
Aichele, Thomas ;
Loechel, Bernd ;
Soennichsen, Carsten ;
Benson, Oliver .
NANO LETTERS, 2010, 10 (03) :891-895
[6]   Assembly of hybrid photonic architectures from nanophotonic constituents [J].
Benson, Oliver .
NATURE, 2011, 480 (7376) :193-199
[7]   Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates [J].
Boriskina, Svetlana V. ;
Reinhard, Bjoern M. .
OPTICS EXPRESS, 2011, 19 (22) :22305-22315
[8]   Integration of colloidal nanocrystals into lithographically patterned devices [J].
Cui, Y ;
Bjork, MT ;
Liddle, JA ;
Sonnichsen, C ;
Boussert, B ;
Alivisatos, AP .
NANO LETTERS, 2004, 4 (06) :1093-1098
[9]   Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles [J].
Dallapiccola, Ramona ;
Gopinath, Ashwin ;
Stellacci, Francesco ;
Dal Negro, Luca .
OPTICS EXPRESS, 2008, 16 (08) :5544-5555
[10]   Colloquium:: Light scattering by particle and hole arrays [J].
de Abajo, F. J. Garcia .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1267-1290