Crystal Structures of GCN2 Protein Kinase C-terminal Domains Suggest Regulatory Differences in Yeast and Mammals

被引:20
作者
He, Hongzhen [1 ]
Singh, Isha [1 ]
Wek, Sheree A. [1 ]
Dey, Souvik [1 ]
Baird, Thomas D. [1 ]
Wek, Ronald C. [1 ]
Georgiadis, Millie M. [1 ,2 ]
机构
[1] Indiana Univ Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA
[2] Indiana Univ Purdue Univ, Dept Chem & Chem Biol, Indianapolis, IN 46202 USA
基金
美国国家卫生研究院;
关键词
NF-KAPPA-B; TRANSLATION INITIATION; TRANSFER-RNA; PHOSPHORYLATION; ACTIVATION; BINDING; MICE; DIMERIZATION; EXPRESSION; MECHANISM;
D O I
10.1074/jbc.M114.560789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single-and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences.
引用
收藏
页码:15023 / 15034
页数:12
相关论文
共 35 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2 [J].
Anthony, TG ;
McDaniel, BJ ;
Byerley, RL ;
McGrath, BC ;
Cavener, DDR ;
McNurlan, MA ;
Wek, RC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (35) :36553-36561
[3]   Eukaryotic Initiation Factor 2 Phosphorylation and Translational Control in Metabolism [J].
Baird, Thomas D. ;
Wek, Ronald C. .
ADVANCES IN NUTRITION, 2012, 3 (03) :307-321
[4]   Antiviral effect of the mammalian translation initiation factor 2α kinase GCN2 against RNA viruses [J].
Berlanga, Juan J. ;
Ventoso, Ivan ;
Harding, Heather P. ;
Deng, Jing ;
Ron, David ;
Sonenberg, Nahum ;
Carrasco, Luis ;
de Haro, Cesar .
EMBO JOURNAL, 2006, 25 (08) :1730-1740
[5]   GCN2 Has Inhibitory Effect on Human Immunodeficiency Virus-1 Protein Synthesis and Is Cleaved upon Viral Infection [J].
del Pino, Javier ;
Luis Jimenez, Jose ;
Ventoso, Ivan ;
Castello, Alfredo ;
Angeles Munoz-Fernandez, Ma ;
de Haro, Cesar ;
Jose Berlanga, Juan .
PLOS ONE, 2012, 7 (10)
[6]   EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome [J].
Delépine, M ;
Nicolino, M ;
Barrett, T ;
Golamaully, M ;
Lathrop, GM ;
Julier, C .
NATURE GENETICS, 2000, 25 (04) :406-409
[7]   Activation of GCN2 in UV-irradiated cells inhibits translation [J].
Deng, J ;
Harding, HP ;
Raught, B ;
Gingras, AC ;
Berlanga, JJ ;
Scheuner, D ;
Kaufman, RJ ;
Ron, D ;
Sonenberg, N .
CURRENT BIOLOGY, 2002, 12 (15) :1279-1286
[8]   Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-Binding domain [J].
Dong, JS ;
Qiu, HF ;
Garcia-Barrio, M ;
Anderson, J ;
Hinnebusch, AG .
MOLECULAR CELL, 2000, 6 (02) :269-279
[9]   Preparation of selenomethionyl proteins for phase determination [J].
Doublie, S .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :523-530
[10]   Features and development of Coot [J].
Emsley, P. ;
Lohkamp, B. ;
Scott, W. G. ;
Cowtan, K. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :486-501