Boundaries of Filled Julia Sets in Generalized Jungck Mann Orbit

被引:27
|
作者
Li, Dong [1 ]
Tanveer, Muhammad [2 ]
Nazeer, Waqas [3 ]
Guo, Xiaorui [4 ]
机构
[1] Zhengzhou Railway Vocat & Tech Coll, Zhengzhou 451460, Henan, Peoples R China
[2] Univ Lahore, Dept Math & Stat, Lahore 54000, Pakistan
[3] Univ Educ, Div Sci & Technol, Lahore 54000, Pakistan
[4] Zhengzhou Univ Light Ind, Zhengzhou 450002, Henan, Peoples R China
关键词
Jungck-Mann iteration; filled Julia set; boundary of Julia set;
D O I
10.1109/ACCESS.2019.2920026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the generalized Jungck Mann orbit (GJMO) and prove the converse theorem of results. We develop algorithms for the generation of filled Julia sets and their boundaries in the GJMO. In simple Julia set (i.e., boundary of filled Julia set), we show the internal structure of Julia set and establish the correspondence between Julia points via dark blue lines in graphs. Moreover, we demonstrate the pictorial effects of filled Julia set and its boundary and graphically present the image change with the change of complex parameter c in the GJMO.
引用
收藏
页码:76859 / 76867
页数:9
相关论文
共 50 条
  • [1] Mandelbrot Sets and Julia Sets in Picard-Mann Orbit
    Zou, Cui
    Shahid, Abdul Aziz
    Tassaddiq, Asifa
    Khan, Arshad
    Ahmad, Maqbool
    IEEE ACCESS, 2020, 8 : 64411 - 64421
  • [2] Julia sets converging to filled quadratic Julia sets
    Kozma, Robert T.
    Devaney, Robert L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 171 - 184
  • [3] Julia sets and Mandelbrot sets in Noor orbit
    Ashish
    Rani, Mamta
    Chugh, Renu
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 615 - 631
  • [4] Mandelbrot and Julia Sets of Complex Polynomials Involving Sine and Cosine Functions via Picard–Mann Orbit
    Nuha Hamada
    Faten Kharbat
    Complex Analysis and Operator Theory, 2023, 17
  • [5] Control of generalized Julia sets
    Zhang, Yongping
    Sun, Weihua
    Liu, Shutang
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1738 - 1744
  • [6] Filled Julia Sets of Chebyshev Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    The Journal of Geometric Analysis, 2021, 31 : 12250 - 12263
  • [7] Filled Julia Sets of Chebyshev Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12250 - 12263
  • [8] On discs contained in filled Julia sets
    Sprus, Przemyslaw
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2025, 18 : 27 - 40
  • [9] On the quaternion Julia sets via Picard–Mann iteration
    Krzysztof Gdawiec
    Ricardo Fariello
    Yan G. S. dos Santos
    Nonlinear Dynamics, 2023, 111 : 17591 - 17603
  • [10] Mandelbrot and Julia Sets of Complex Polynomials Involving Sine and Cosine Functions via Picard-Mann Orbit
    Hamada, Nuha
    Kharbat, Faten
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (01)