NON-CONSTANT POSITIVE STEADY STATES FOR A STRONGLY COUPLED NONLINEAR REACTION-DIFFUSION SYSTEM ARISING IN POPULATION DYNAMICS

被引:0
|
作者
Wen, Zijuan [1 ]
Qi, Yuan [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Longdong Univ, Dept Math, Qingyang 745000, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion; cross-diffusion; food chain; non-constant positive steady states; stationary pattern formation; PREY-PREDATOR SYSTEM; CROSS-DIFFUSION; HETEROGENEOUS ENVIRONMENT; COEXISTENCE STATES; ELLIPTIC-SYSTEMS; MUTUALIST MODEL; SELF-DIFFUSION; INSTABILITY; BIFURCATION;
D O I
10.1216/RMJ-2015-45-4-1333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a strongly coupled reaction-diffusion system describing three interacting species in a simple food chain structure. Based on the Leray-Schauder degree theory, the existence of non-constant positive steady states is investigated. The results indicate that, when the intrinsic growth rate of the middle species is small, cross-diffusions of the predators versus the preys are helpful to create global coexistence (stationary patterns).
引用
收藏
页码:1333 / 1355
页数:23
相关论文
共 50 条