Dynamic Length Scales in Glass-Forming Liquids: An Inhomogeneous Molecular Dynamics Simulation Approach

被引:8
作者
Kim, Kang [1 ,2 ]
Saito, Shinji [1 ,2 ]
Miyazaki, Kunimasa [3 ]
Biroli, Giulio [4 ]
Reichman, David R. [5 ,6 ]
机构
[1] Inst Mol Sci, Okazaki, Aichi 4448585, Japan
[2] Grad Univ Adv Studies, Sch Phys Sci, Okazaki, Aichi 4448585, Japan
[3] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan
[4] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[5] CNRS, URA 2306, F-75700 Paris, France
[6] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
日本学术振兴会;
关键词
SPATIALLY HETEROGENEOUS DYNAMICS; SUPERCOOLED LIQUIDS; NONLINEAR SUSCEPTIBILITY; GROWING LENGTH; TRANSITION; DIFFUSION;
D O I
10.1021/jp4035419
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we numerically investigate a new method for the characterization of growing length scales associated with spatially heterogeneous dynamics of glass-forming liquids. This approach, motivated by the formulation of the inhomogeneous mode-coupling theory (IMCT) [Biroli, G.; et al. Phys. Rev. Lett. 2006 97, 195701], utilizes inhomogeneous molecular dynamics simulations in which the system is perturbed by a spatially modulated external potential. We show that the response of the two-point correlation function to the external field allows one to probe dynamic correlations. We examine the critical properties shown by this function, in particular, the associated dynamic correlation length, that is found to be comparable to the one extracted from standardly employed four-point correlation functions. Our numerical results are in qualitative agreement with IMCT predictions but suggest that one has to take into account fluctuations not included in this mean-field approach to reach quantitative agreement. Advantages of our approach over the more conventional one based on four-point correlation functions are discussed.
引用
收藏
页码:13259 / 13267
页数:9
相关论文
共 50 条
[31]   Graph-Dynamics correspondence in metallic glass-forming liquids [J].
Zhou, Xin-Jia ;
Yang, Feng ;
Yang, Xiao-Dong ;
Ma, Lin ;
Wu, Zhen-Wei .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (09)
[32]   Finite-size effects in the dynamics of glass-forming liquids [J].
Berthier, Ludovic ;
Biroli, Giulio ;
Coslovich, Daniele ;
Kob, Walter ;
Toninelli, Cristina .
PHYSICAL REVIEW E, 2012, 86 (03)
[33]   Glass-forming liquids [J].
Bretonnet, Jean-Louis .
MOLECULAR PHYSICS, 2016, 114 (20) :2868-2893
[34]   Microscopic origin of the logarithmic relaxation in molecular glass-forming liquids [J].
Chen, Changjiu ;
Krishnan, Rithin P. ;
Wong, Kaikin ;
Yu, Dehong ;
Juranyi, Fanni ;
Chathoth, Suresh M. .
PHYSICAL REVIEW B, 2018, 98 (09)
[35]   Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures [J].
Li, Xiangqian ;
Wang, Meng ;
Liu, Riping ;
Ngai, Kia L. ;
Tian, Yongjun ;
Wang, Li-Min ;
Capaccioli, Simone .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (10)
[36]   Characteristic length scales of the secondary relaxations in glass-forming glycerol [J].
Gupta, S. ;
Mamontov, E. ;
Jalarvo, N. ;
Stingaciu, L. ;
Ohl, M. .
EUROPEAN PHYSICAL JOURNAL E, 2016, 39 (03)
[37]   Simple Model for Dynamic Heterogeneity in Glass-Forming Liquids [J].
Pandit, Rajib K. ;
Castillo, Horacio E. .
PHYSICAL REVIEW LETTERS, 2023, 131 (21)
[38]   Grain boundaries exhibit the dynamics of glass-forming liquids [J].
Zhang, Hao ;
Srolovitz, David J. ;
Douglas, Jack F. ;
Warren, James A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (19) :7735-7740
[39]   Dynamic mechanical analysis of confined glass-forming liquids [J].
Koppensteiner, J. ;
Schranz, W. .
PHASE TRANSITIONS, 2010, 83 (09) :744-757
[40]   Elasticity, Facilitation, and Dynamic Heterogeneity in Glass-Forming Liquids [J].
Ozawa, Misaki ;
Biroli, Giulio .
PHYSICAL REVIEW LETTERS, 2023, 130 (13)