Euler-Mellin Integrals and A-Hypergeometric Functions

被引:17
作者
Berkesch, Christine [1 ]
Forsgard, Jens [1 ]
Passare, Mikael
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
关键词
D O I
10.1307/mmj/1395234361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider integrals that generalize both Mellin transforms of rational functions of the form 1/f and classical Euler integrals. The domains of integration of our so-called Euler Mellin integrals are naturally related to the coamoeba of f, and the components of the complement of the closure of this coamoeba give rise to a family of these integrals. After performing an explicit meromorphic continuation of Euler Mellin integrals, we interpret them as A-hypergeometric functions and discuss their linear independence and relation to Mellin Barnes integrals.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 17 条
[1]   Irreducibility of A-hypergeometric systems [J].
Beukers, F. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (1-2) :30-39
[2]  
Beukers F., 2011, ARXIV11010493
[3]   The A-hypergeometric system associated with a monomial curve [J].
Cattani, E ;
D'Andrea, C ;
Dickenstein, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (02) :179-207
[4]  
Erdelyi A., 1937, SB AKAD WISS W MN 2A, V146, P431
[5]  
Forsgard J., ARK MTA IN PRESS
[6]  
Forsgard J., 2012, THESIS STOCKHOLM U
[7]  
Gelfand I.M., 1994, DISCRIMINANTS RESULT
[8]   GENERALIZED EULER INTEGRALS AND A-HYPERGEOMETRIC FUNCTIONS [J].
GELFAND, IM ;
KAPRANOV, MM ;
ZELEVINSKY, AV .
ADVANCES IN MATHEMATICS, 1990, 84 (02) :255-271
[9]  
Johansson Peter, 2010, THESIS STOCKHOLM U
[10]  
Nilsson L., 2009, THESIS STOCKHOLM U