Ergodic degrees for continuous-time Markov chains

被引:21
作者
Mao, YH [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2004年 / 47卷 / 02期
关键词
Markov chain; ergodic degree; hitting time; convergence to stationary;
D O I
10.1360/02ys0306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the existence of the higher orders deviation matrices for continuous time Markov chains by the moments for the hitting times. An estimate of the polynomial convergence rates for the transition matrix to the stationary measure is obtained. Finally, the explicit formulas for birth-death processes are presented.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 17 条
[1]  
Anderson W. J., 1991, CONTINUOUS TIME MARK
[2]  
Chen M F, 1992, MARKOV CHAINS NONEQU
[3]   Explicit bounds of tbe first eigenvalue [J].
Chen, MF .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (10) :1051-1059
[4]   Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains [J].
Chen, MF .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 87 (02) :281-297
[5]  
CHEN MF, 2002, P ICM BEIJ 2002, V3
[6]   The deviation matrix of a continuous-time Markov chain [J].
Coolen-Schrijner, P ;
van Doorn, EA .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2002, 16 (03) :351-366
[7]   ALGEBRAIC L(2) DECAY OF ATTRACTIVE CRITICAL PROCESSES ON THE LATTICE [J].
DEUSCHEL, JD .
ANNALS OF PROBABILITY, 1994, 22 (01) :264-283
[8]  
FELLER W, 1966, INTRO PROBABILITY IT, V2
[9]  
Hill E., 1957, FUNCTIONAL ANAL SEMI
[10]  
Hou Z T, 1978, HOMOGENEOUS DENUMERA