Divergent Conservation Laws in Hyperbolic Thermoelasticity

被引:0
|
作者
Murashkin, E. V. [1 ,2 ,3 ]
Radayev, Y. N. [1 ,4 ]
机构
[1] Russian Acad Sci, Ishlinsky Inst Problems Mech, Prospekt Vernadskogo 101-1, Moscow 119526, Russia
[2] Bauman Moscow State Tech Univ, Ul 2 Ya Baumanskaya,5-1, Moscow 105005, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Kashirskoe Shosse 31, Moscow 115409, Russia
[4] Kyoto Univ, Grad Sch Energy Sci, Dept Energy Convers Sci, Bldg 8, Kyoto 6068501, Japan
来源
EIGHTH POLYAKHOV'S READING | 2018年 / 1959卷
基金
俄罗斯基础研究基金会;
关键词
WEAK DISCONTINUITIES;
D O I
10.1063/1.5034700
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present study is devoted to the problem of formulation of conservation laws in divergent form for hyperbolic thermoelastic continua. The field formalism is applied to study the problem. A natural density of thermoelastic action and the corresponding variational least action principle are formulated. A special form of the first variation of the action is employed to obtain 4-covariant divergent conservation laws. Differential field equations and constitutive laws are derived from a special form of the first variation of the action integral. The objectivity of constitutive equations is provided by the rotationally invariant forms of the Lagrangian employed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Hyperbolic Conservation Laws
    Markfelder, Simon
    CONVEX INTEGRATION APPLIED TO THE MULTI-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS, 2021, 2294 : 13 - 25
  • [2] On conservation laws in generalized dynamic thermoelasticity
    Koureas, T
    Charalambopoulos, A
    Kalpakides, VK
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2002, 40 (15) : 1687 - 1696
  • [3] CONSERVATION-LAWS IN LINEAR THERMOELASTICITY
    JARIC, JP
    MARTINOVIC, M
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1979, 27 (5-6): : 415 - 424
  • [4] On hyperbolic systems of conservation laws
    Pokhozhaev, SI
    DIFFERENTIAL EQUATIONS, 2003, 39 (05) : 701 - 711
  • [5] On Hyperbolic Systems of Conservation Laws
    S. I. Pokhozhaev
    Differential Equations, 2003, 39 : 701 - 711
  • [6] Hyperbolic systems of conservation laws
    Bressan, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3B (03): : 635 - 656
  • [7] Conservation laws and their hyperbolic regularizations
    Palin V.V.
    Radkevich E.V.
    Journal of Mathematical Sciences, 2010, 164 (6) : 922 - 944
  • [8] Entropy for hyperbolic conservation laws
    Dafermos, CM
    ENTROPY-BK, 2003, : 107 - 120
  • [9] Entropy for hyperbolic conservation laws
    Dafermos, CM
    ENTROPY-BOOK, 2003, : 107 - 120
  • [10] Hyperbolic regularizations of conservation laws
    V. V. Palin
    E. V. Radkevich
    Russian Journal of Mathematical Physics, 2008, 15 : 343 - 363