Carbohydrate protection of enzyme structure and function against guanidinium chloride treatment depends on the nature of carbohydrate and enzyme

被引:66
作者
SolaPenna, M
FerreiraPereira, A
Lemos, AD
MeyerFernandes, JR
机构
[1] UNIV FED RIO DE JANEIRO,FAC FARM,DEPT ANAL CLIN & TOXICOL,BR-21944910 RIO JANEIRO,BRAZIL
[2] UNIV FED RIO DE JANEIRO,INST CIENCIAS BIOL,DEPT BIOQUIM MED,BR-21944910 RIO JANEIRO,BRAZIL
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1997年 / 248卷 / 01期
关键词
trehalose; stabilizing agents; osmolyte; enzyme; protection;
D O I
10.1111/j.1432-1033.1997.00024.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Baker's yeast cells accumulate osmolytes as a response to several stress conditions such as high-temperature and low-temperature shifts, dehydration, or osmotic stress. One of the major osmolytes that accumulates is trehalose, which plays an essential role affecting the survival of yeast at the time of stress. In this report, we show that trehalose efficiently protects the function and the structure of two yeast cytosolic enzymes against chemical denaturation by guanidinium chloride. Other sugars tested also protected yeast pyrophosphatase and glucose-6-phosphate dehydrogenase structure against guanidinium chloride effects, but were not as efficient at protecting enzyme activity. The thermostable pyrophosphatase from Bacillus stearothermophilus was also protected by several sugars against the chaotropic properties of guanidinium chloride, but was only protected by trehalose against functional inactivation. The function of the membrane-embedded H+-ATPase from yeast could not be protected by any of the tested sugars, although all of the sugars protected its structure from guanidinium-chloride-induced unfolding. The results presented in this study suggest that several sugars are able to prevent protein unfolding induced by a chaotropic compound. However, prevention of functional inactivation depends on the nature of the sugar. Trehalose was the most efficient, being able to protect many cytosolic enzymes against guanidinium chloride. The efficiency of protection also depended on the nature of the protein tested. This might explain why trehalose is one of the osmolytes accumulated in yeast and also why it is not the only osmolyte to accumulate.
引用
收藏
页码:24 / 29
页数:6
相关论文
共 39 条
[1]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[2]   Direct observation of protein solvation and discrete disorder with experimental crystallographic phases [J].
Burling, FT ;
Weis, WI ;
Flaherty, KM ;
Brunger, AT .
SCIENCE, 1996, 271 (5245) :72-77
[3]   AN INFRARED SPECTROSCOPIC STUDY OF THE INTERACTIONS OF CARBOHYDRATES WITH DRIED PROTEINS [J].
CARPENTER, JF ;
CROWE, JH .
BIOCHEMISTRY, 1989, 28 (09) :3916-3922
[4]  
CHINI EN, 1991, Z NATURFORSCH C, V46, P644
[5]   EXTRAORDINARY STABILITY OF ENZYMES DRIED IN TREHALOSE - SIMPLIFIED MOLECULAR-BIOLOGY [J].
COLACO, C ;
SEN, S ;
THANGAVELU, M ;
PINDER, S ;
ROSER, B .
BIO-TECHNOLOGY, 1992, 10 (09) :1007-1011
[6]   PRESERVATION OF MEMBRANES IN ANHYDROBIOTIC ORGANISMS - THE ROLE OF TREHALOSE [J].
CROWE, JH ;
CROWE, LM ;
CHAPMAN, D .
SCIENCE, 1984, 223 (4637) :701-703
[7]   STABILIZATION OF DRY PHOSPHOLIPID-BILAYERS AND PROTEINS BY SUGARS [J].
CROWE, JH ;
CROWE, LM ;
CARPENTER, JF ;
WISTROM, CA .
BIOCHEMICAL JOURNAL, 1987, 242 (01) :1-10
[8]   Is trehalose special for preserving dry biomaterials? [J].
Crowe, LM ;
Reid, DS ;
Crowe, JH .
BIOPHYSICAL JOURNAL, 1996, 71 (04) :2087-2093
[9]   ACQUISITION OF THERMOTOLERANCE IN SACCHAROMYCES-CEREVISIAE WITHOUT HEAT-SHOCK PROTEIN HSP-104 AND IN THE ABSENCE OF PROTEIN-SYNTHESIS [J].
DEVIRGILIO, C ;
PIPER, P ;
BOLLER, T ;
WIEMKEN, A .
FEBS LETTERS, 1991, 288 (1-2) :86-90
[10]  
DEVIRGILIO C, 1994, EUR J BIOCHEM, V219, P179