CGBVS-DNN: Prediction of Compound-protein Interactions Based on Deep Learning

被引:54
作者
Hamanaka, Masatoshi [1 ]
Taneishi, Kei [2 ]
Iwata, Hiroaki [3 ]
Ye, Jun [4 ]
Pei, Jianguo [4 ]
Hou, Jinlong [4 ]
Okuno, Yasushi [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Sakyo Ku, Shogoin kawaharacho, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Med, Sakyo Ku, Shogoin kawaharacho, Kyoto 6068507, Japan
[3] RIKEN, Adv Inst Computat Sci, Chuo Ku, 7-1-28, Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[4] Fdn Biomed Res & Innovat, Chuo Ku, 1-6-5,Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
基金
日本科学技术振兴机构;
关键词
deep learning; in-silico screening; compound-protein interactions (cpis); chemical genomics-based virtual screening (cgbvs); support vector machine;
D O I
10.1002/minf.201600045
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Computational prediction of compound-protein interactions (CPIs) is of great importance for drug design as the first step in in-silico screening. We previously proposed chemical genomics-based virtual screening (CGBVS), which predicts CPIs by using a support vector machine (SVM). However, the CGBVS has problems when training using more than a million datasets of CPIs since SVMs require an exponential increase in the calculation time and computer memory. To solve this problem, we propose the CGBVS-DNN, in which we use deep neural networks, a kind of deep learning technique, instead of the SVM. Deep learning does not require learning all input data at once because the network can be trained with small mini-batches. Experimental results show that the CGBVS-DNN outperformed the original CGBVS with a quarter million CPIs. Results of cross-validation show that the accuracy of the CGBVS-DNN reaches up to 98.2% (s<0.01) with 4 million CPIs.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
Agresti A., 2002, CATEGORICAL DATA ANA, VSecond, P1
[2]  
[Anonymous], NIPS
[3]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[4]  
Bergstra J., 2011, P NIPS2011, P2546
[5]  
Bergstra J., 2010, P 9 PYTH SCI C, P1
[6]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[7]  
Erhan D, 2010, J MACH LEARN RES, V11, P625
[8]  
Ewing TJA, 1997, J COMPUT CHEM, V18, P1175, DOI 10.1002/(SICI)1096-987X(19970715)18:9<1175::AID-JCC6>3.0.CO
[9]  
2-O
[10]   6 Deep Learning in Drug Discovery [J].
Gawehn, Erik ;
Hiss, Jan A. ;
Schneider, Gisbert .
MOLECULAR INFORMATICS, 2016, 35 (01) :3-14