Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms

被引:0
作者
Sehgal, Adarsh [1 ,2 ]
Sehgal, Muskan
La, Hung Manh [1 ,2 ]
Bebis, George [2 ]
机构
[1] Adv Robot & Automat ARA Lab, Reno, NV 89557 USA
[2] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II | 2022年 / 13599卷
关键词
Breast mass detection; Genetic algorithm; GA-E2E; COMPUTER-AIDED DETECTION; GENETIC ALGORITHM; UPDATE; PERFORMANCE; ACCURACY;
D O I
10.1007/978-3-031-20716-7_21
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Accurate breast cancer diagnosis through mammography has the potential to save millions of lives around the world. Deep learning (DL) methods have shown to be very effective for mass detection in mammograms Additional improvements of current DL models will further improve the effectiveness of these methods. A critical issue in this context is how to pick the right hyperparameters for DL models. In this paper, we present GA-E2E, a new approach for tuning the hyperparameters of DL models for breast cancer detection using Genetic Algorithms (GAs). Our findings reveal that differences in parameter values can considerably alter the area under the curve (AUC), which is used to determine a classifier's performance.
引用
收藏
页码:270 / 283
页数:14
相关论文
共 50 条
[41]   A Comparative Analysis of Different Machine Learning Algorithms Developed with Hyperparameter Optimization in the Prediction of Student Academic Success [J].
Demirturk, Bahar ;
Harunoglu, Tuba .
APPLIED SCIENCES-BASEL, 2025, 15 (11)
[42]   Decomposition and recompilation of mammograms for breast tumour detection [J].
Yeh, Jinn-Yi ;
Chan, Si-Wa .
EXPERT SYSTEMS, 2018, 35 (02)
[43]   Combination of conspicuity improved synthetic mammograms and digital breast tomosynthesis: A promising approach for mass detection [J].
Kim, Seong Tae ;
Kim, Dae Hoe ;
Ro, Yong Man .
MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
[44]   Exploration-Driven Genetic Algorithms for Hyperparameter Optimisation in Deep Reinforcement Learning [J].
Brzek, Bartlomiej ;
Probierz, Barbara ;
Kozak, Jan .
APPLIED SCIENCES-BASEL, 2025, 15 (04)
[45]   Automated breast cancer detection in digital mammograms: A moth flame optimization based ELM approach [J].
Muduli, Debendra ;
Dash, Ratnakar ;
Majhi, Banshidhar .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 59
[46]   Deep learning on routine full-breast mammograms enhances lymph node metastasis prediction in early breast cancer [J].
Zhang, Daqu ;
Dihge, Looket ;
Bendahl, Par-Ola ;
Arvidsson, Ida ;
Dustler, Magnus ;
Ellbrant, Julia ;
Gulis, Kim ;
Hjartstrom, Malin ;
Ohlsson, Mattias ;
Rejmer, Cornelia ;
Schmidt, David ;
Zackrisson, Sophia ;
Eden, Patrik ;
Ryden, Lisa .
NPJ DIGITAL MEDICINE, 2025, 8 (01)
[47]   Optimizing dust accumulation quantification on photovoltaic panels using deep learning visual models with hyperparameter optimization [J].
Tahir, Muhammad Faizan ;
Lamichhane, Samyam ;
Tzes, Anthony ;
Fang, Yi ;
El-Fouly, Tarek H. M. ;
Umar, Shayan .
RENEWABLE ENERGY, 2025, 251
[48]   Computer Aided Detection of Breast Density and Mass, and Visualization of Other Breast Anatomical Regions on Mammograms Using Graph Cuts [J].
Saidin, Nafiza ;
Sakim, Harsa Amylia Mat ;
Ngah, Umi Kalthum ;
Shuaib, Ibrahim Lutfi .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013
[49]   Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography [J].
Samala, Ravi K. ;
Chan, Heang-Ping ;
Hadjiiski, Lubomir ;
Helvie, Mark A. ;
Wei, Jun ;
Cha, Kenny .
MEDICAL PHYSICS, 2016, 43 (12) :6654-6666
[50]   Deep Learning Algorithm Based Breast Cancer Detection [J].
Malini, P. ;
Anusuya, S. ;
Vidya, A. .
BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (02) :43-48