Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms

被引:0
|
作者
Sehgal, Adarsh [1 ,2 ]
Sehgal, Muskan
La, Hung Manh [1 ,2 ]
Bebis, George [2 ]
机构
[1] Adv Robot & Automat ARA Lab, Reno, NV 89557 USA
[2] Univ Nevada, Dept Comp Sci & Engn, Reno, NV 89557 USA
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT II | 2022年 / 13599卷
关键词
Breast mass detection; Genetic algorithm; GA-E2E; COMPUTER-AIDED DETECTION; GENETIC ALGORITHM; UPDATE; PERFORMANCE; ACCURACY;
D O I
10.1007/978-3-031-20716-7_21
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Accurate breast cancer diagnosis through mammography has the potential to save millions of lives around the world. Deep learning (DL) methods have shown to be very effective for mass detection in mammograms Additional improvements of current DL models will further improve the effectiveness of these methods. A critical issue in this context is how to pick the right hyperparameters for DL models. In this paper, we present GA-E2E, a new approach for tuning the hyperparameters of DL models for breast cancer detection using Genetic Algorithms (GAs). Our findings reveal that differences in parameter values can considerably alter the area under the curve (AUC), which is used to determine a classifier's performance.
引用
收藏
页码:270 / 283
页数:14
相关论文
共 50 条
  • [1] Deep Learning Based Mass Detection in Mammograms
    Cao, Zhenjie
    Yang, Zhicheng
    Zhang, Yanbo
    Lin, Ruei-Sung
    Wu, Shibin
    Huang, Lingyun
    Han, Mei
    Ma, Jie
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [2] Region-of-Interest Optimization for Deep-Learning-Based Breast Cancer Detection in Mammograms
    Huynh, Hoang Nhut
    Tran, Anh Tu
    Tran, Trung Nghia
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [3] A Comparison Study of Deep Learning Techniques for Mass Detection in Mammograms
    Noro, K.
    Zhang, X.
    Takano, H.
    Ichiji, K.
    Homma, N.
    MEDICAL PHYSICS, 2019, 46 (06) : E347 - E347
  • [4] Deep learning for mass detection in Full Field Digital Mammograms
    Agarwal, Richa
    Diaz, Oliver
    Yap, Moi Hoon
    Llado, Xavier
    Marti, Robert
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [5] Mass Detection in Mammograms Using a Robust Deep Learning Model
    Singh, Vivek Kumar
    Abdel-Nasser, Mohamed
    Rashwan, Hatem A.
    Akram, Farhan
    Haffar, Rami
    Pandey, Nidhi
    Sarker, Md Mostafa Kamal
    Kohan, Sebastian
    Guma, Josep
    Romani, Santiago
    Puig, Domenec
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 365 - 372
  • [6] Early Detection of Breast Cancer using Deep Learning in Mammograms
    Gudur, Rashmi
    Patil, Nitin
    Thorat, S. T.
    JOURNAL OF PIONEERING MEDICAL SCIENCES, 2024, 13 (02): : 18 - 27
  • [7] Hyperparameter Optimization of Deep Learning Networks for Classification of Breast Histopathology Images
    Lin, Cheng-Jian
    Jeng, Shiou-Yun
    Lee, Chin-Ling
    SENSORS AND MATERIALS, 2021, 33 (01) : 315 - 325
  • [8] Breast Mass Detection in Mammograms via Blending Adversarial Learning
    Lin, Chunze
    Tang, Ruixiang
    Lin, Darryl D.
    Liu, Langechuan
    Lu, Jiwen
    Chen, Yunqiang
    Gao, Dashan
    Zhou, Jie
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2019, 2019, 11827 : 52 - 61
  • [9] Intelligent Breast Mass Classification Approach Using Archimedes Optimization Algorithm with Deep Learning on Digital Mammograms
    Basheri, Mohammed
    BIOMIMETICS, 2023, 8 (06)
  • [10] Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach
    Nazanin Mobini
    Marina Codari
    Francesca Riva
    Maria Giovanna Ienco
    Davide Capra
    Andrea Cozzi
    Serena Carriero
    Diana Spinelli
    Rubina Manuela Trimboli
    Giuseppe Baselli
    Francesco Sardanelli
    European Radiology, 2023, 33 : 6746 - 6755