Periodic measures of reaction-diffusion lattice systems driven by superlinear noise

被引:2
|
作者
Lin, Yusen [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
[2] Natl Engn Lab Integrated Transportat Big Data App, Chengdu 610031, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2022年 / 30卷 / 01期
关键词
superlinear noise; periodic measure; reaction-diffusion lattice system; ATTRACTORS; PROPAGATION; DYNAMICS; EQUATIONS; BEHAVIOR;
D O I
10.3934/era.2022002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The periodic measures are investigated for a class of reaction-diffusion lattice systems driven by superlinear noise defined on Z(k). The existence of periodic measures for the lattice systems is established in l(2) by Krylov-Bogolyubov's method. The idea of uniform estimates on the tails of solutions is employed to establish the tightness of a family of distribution laws of the solutions.
引用
收藏
页码:35 / 51
页数:17
相关论文
共 50 条
  • [21] Large Deviation Principle for Stochastic Reaction-Diffusion Equations with Superlinear Drift on R Driven by Space-Time White Noise
    Li, Yue
    Shang, Shijie
    Zhai, Jianliang
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (04) : 3496 - 3539
  • [22] The linear noise approximation for reaction-diffusion systems on networks
    Malbor Asllani
    Tommaso Biancalani
    Duccio Fanelli
    Alan J. McKane
    The European Physical Journal B, 2013, 86
  • [23] The linear noise approximation for reaction-diffusion systems on networks
    Asllani, Malbor
    Biancalani, Tommaso
    Fanelli, Duccio
    McKane, Alan J.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11):
  • [24] Diffusive mixing of periodic wave trains in reaction-diffusion systems
    Sandstede, Bjoern
    Scheel, Arnd
    Schneider, Guido
    Uecker, Hannes
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (05) : 3541 - 3574
  • [25] TRAVELING WAVE SOLUTIONS FOR TIME PERIODIC REACTION-DIFFUSION SYSTEMS
    Bo, Wei-Jian
    Lin, Guo
    Ruan, Shigui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) : 4329 - 4351
  • [26] STABILITY OF THE NUMERICAL-SOLUTION OF THE PERIODIC REACTION-DIFFUSION SYSTEMS
    GALEONE, L
    MASTROSERIO, C
    APPLIED NUMERICAL MATHEMATICS, 1985, 1 (04) : 315 - 324
  • [27] Front propagation under periodic forcing in reaction-diffusion systems
    Zemskov, EP
    Kassner, K
    Müller, SC
    EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (03): : 285 - 292
  • [28] Front propagation under periodic forcing in reaction-diffusion systems
    E. P. Zemskov
    K. Kassner
    S. C. Müller
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 34 : 285 - 292
  • [29] Lattice Boltzmann study of pattern formation in reaction-diffusion systems
    Ayodele, S. G.
    Varnik, F.
    Raabe, D.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [30] Existence and stability of invariant/periodic measures of lattice reversible Selkov systems driven by locally Lipschitz noise
    Wang, Yan
    Guo, Chunxiao
    Wu, Yunshun
    Wang, Renhai
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)