LOCAL WELL-POSEDNESS OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM WITH VACUUM

被引:3
作者
Fan, Jishan [1 ]
Jia, Yueling [2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
[2] Inst Appl Phys & Computat Math, FengHao East Rd, Beijing 100094, Peoples R China
关键词
Navier-Stokes-Maxwell; vacuum; local well-posedness; LARGE TIME BEHAVIOR; MACH NUMBER LIMIT; MAGNETOHYDRODYNAMIC EQUATIONS; CONVERGENCE;
D O I
10.3934/krm.2018005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the local well-posedness of strong solutions for a compressible Navier-Stokes-Maxwell system, provided the initial data satisfy a natural compatibility condition. We do not assume the positivity of initial density, it may vanish in an open subset (vacuum) of Omega.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 27 条
[1]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[2]  
[Anonymous], 1962, MAGNETOGASDYNAMICS P
[3]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[4]   Existence results for viscous polytropic fluids with vacuum [J].
Cho, Yonggeun ;
Kim, Hyunseok .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) :377-411
[5]   Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain [J].
Dou, Changsheng ;
Jiang, Song ;
Ou, Yaobin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (02) :379-398
[6]   GREEN'S FUNCTION AND LARGE TIME BEHAVIOR OF THE NAVIER-STOKES-MAXWELL SYSTEM [J].
Duan, Renjun .
ANALYSIS AND APPLICATIONS, 2012, 10 (02) :133-197
[7]   Strong solution to the compressible magnetohydrodynamic equations with vacuum [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :392-409
[8]   CONVERGENCE OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM TO THE INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED DOMAIN [J].
Fan, Jishan ;
Li, Fucai ;
Nakamura, Gen .
KINETIC AND RELATED MODELS, 2016, 9 (03) :443-453
[9]   ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS [J].
Feng, Yuehong ;
Wang, Shu ;
Li, Xin .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (05) :955-969
[10]   Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum [J].
Hong GuangYi ;
Hou XiaoFeng ;
Peng HongYun ;
Zhu ChangJiang .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) :2463-2484