Bismuth Incorporation into Gallium Phosphide

被引:0
作者
Christian, Theresa M. [1 ,2 ]
Beaton, Daniel A. [1 ]
Mascarenhas, Angelo [1 ]
Alberi, Kirstin [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Colorado, Boulder, CO 80309 USA
来源
INTERNATIONAL SYMPOSIUM ON CLUSTERS AND NANOMATERIALS | 2017年 / 10174卷
关键词
dilute bismide; GaP; molecular beam epitaxy; interstitials; GAP-N; GROWTH; GAAS1-XBIX; BAND;
D O I
10.1117/12.2245432
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gallium phosphide bismide (GaP1-xBix) epilayers with bismuth fractions from 0.9% to 3.2%, as calculated from lattice parameter measurements, were studied with Rutherford backscattering spectrometry (RBS) to directly measure bismuth incorporation. The total bismuth fractions found by RBS were higher than expected from the lattice parameter calculations. Furthermore, in one analyzed sample grown by molecular beam epitaxy at 300 degrees C, 55% of incorporated bismuth was found to occupy interstitial sites. We discuss implications of this high interstitial incorporation fraction and its possible relationship to x-ray diffraction and photoluminescence measurements of GaP0.99Bi0.01.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Ammonolysis of gallium phosphide GaP to the nanocrystalline wide bandgap semiconductor gallium nitride GaN
    Drygas, Mariusz
    Sitarz, Maciej
    Janik, Jerzy F.
    RSC ADVANCES, 2015, 5 (128) : 106128 - 106140
  • [32] THE FORMATION OF SINGLE-DOMAIN GALLIUM PHOSPHIDE BUFFER LAYERS ON A SILICON SUBSTRATE WITHOUT THE USE OF MIGRATION ENHANCED EPITAXY TECHNIQUE
    Fedoro, V. V.
    Fedina, S., V
    Kaveev, A. K.
    Kirilenko, D. A.
    Faleev, N. N.
    Mukhin, I. S.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2024, 17 (02): : 120 - 133
  • [33] Perovskite-Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip
    Trofimov, Pavel
    Pushkarev, Anatoly P.
    Sinev, Ivan S.
    Fedorov, Vladimir V.
    Bruyere, Stephanie
    Bolshakov, Alexey
    Mukhin, Ivan S.
    Makarov, Sergey V.
    ACS NANO, 2020, 14 (07) : 8126 - 8134
  • [34] Dynamics of T-site muonium states in gallium phosphide
    Vernon, J. E.
    Carroll, B. R.
    Bani-Salameh, H. N.
    Lichti, R. L.
    Celebi, Y. G.
    Fan, I.
    Mansour, A. I.
    Chow, K. H.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (5-7) : 820 - 823
  • [35] Optical and acoustic phonon modes confined in gallium phosphide nanopartides
    Zhang Zhaochun
    Zhang Neng
    RARE METALS, 2010, 29 (06) : 561 - 566
  • [36] Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics
    Tilmann, Benjamin
    Grinblat, Gustavo
    Berte, Rodrigo
    Oezcan, Mehmet
    Kunzelmann, Viktoria F.
    Nickel, Bert
    Sharp, Ian D.
    Cortes, Emiliano
    Maier, Stefan A.
    Li, Yi
    NANOSCALE HORIZONS, 2020, 5 (11) : 1500 - 1508
  • [37] Fabrication and optical properties of gallium phosphide nanoparticulate thin film
    Wang, Bao-Ping
    Zhang, Zhao-Chun
    Zhang, Neng
    SOLID STATE SCIENCES, 2010, 12 (07) : 1188 - 1191
  • [38] GALLIUM PHOSPHIDE SOLAR CELLS FOR MULTI-JUNTION SYSTEMS
    Lu, Xuesong
    Huang, Susan R.
    Opila, Robert L.
    Barnett, Allen
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 1113 - +
  • [39] Dielectric characteristic and local phase transition of gallium phosphide nanosolid
    Zhang, Zhao-Chun
    Li, Jian-Lin
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (15) : 5079 - 5084
  • [40] Photosensitive nanostructures based on gallium phosphide nanowires and carbon dots
    Kozko, I. A.
    Karaseva, E. P.
    Sosnovitskaia, Z. F.
    Istomina, M. S.
    Fedorov, V. V.
    Shmakov, S. V.
    Kondratev, V. M.
    Bolshakov, A. D.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2024, 17 (01): : 113 - 118