Nonlithographic fabrication of 25 nm magnetic nanodot arrays with perpendicular anisotropy over a large area

被引:7
作者
Rahman, M. Tofizur [1 ]
Shams, Nazmun N. [1 ]
Lai, Chih-Huang [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
关键词
ANODIC POROUS ALUMINA; RECORDING MEDIA; GROWTH; SI;
D O I
10.1063/1.3072444
中图分类号
O59 [应用物理学];
学科分类号
摘要
A simple method is demonstrated to fabricate 25 nm magnetic nanodot arrays with perpendicular anisotropy over 10 cm(2) coverage area. The nanodot arrays are fabricated by depositing Co/Pt multilayers (MLs) onto the SiO2 dot arrays formed on a Si wafer. At first, arrays of the SiO2 dots are fabricated on a Si wafer by anodizing a thin Al film deposited on it. The SiO2 dots are formed at the base of the anodized alumina (AAO) pores due to the selective oxidation of the Si through the AAO pores during over anodization of the Al film. The average diameter, periodicity, and height of the SiO2 dots are about 24, 43, and 17 nm, respectively. Then {Co(0.4 nm)/Pt(0.08 nm)}(8) MLs with a 3 nm Pt buffer layer is deposited onto the SiO2 dot arrays by sputtering. The average diameter and periodicity of the Co/Pt nanodot arrays are 25.4 and 43 nm, respectively, with narrow distribution. The nanodot arrays exhibit strong perpendicular anisotropy with a squareness ratio of unity and negative nucleation fields. The coercivity of the nanodot arrays is about one order higher than that of the continuous film, i.e., the same structure deposited on the SiO2 substrate. The magnetization reversal of the continuous film is governed by domain-wall motion, while the magnetization reversal of the nanodot arrays is dominated by the Stoner-Wohlfarth-like rotation. These results indicate that the fabricated structure can be considered as an isolated nanodot array. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3072444]
引用
收藏
页数:3
相关论文
共 26 条
[1]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[2]   Transfer of nanoporous pattern of anodic porous alumina into Si substrate [J].
Asoh, H ;
Matsuo, M ;
Yoshihama, M ;
Ono, S .
APPLIED PHYSICS LETTERS, 2003, 83 (21) :4408-4410
[3]   Fabrication and characterization of MgO-based magnetic tunnel junctions for spin momentum transfer switching [J].
Assefa, Solomon ;
Nowak, J. ;
Sun, J. Z. ;
O'Sullivan, E. ;
Kanakasabapathy, S. ;
Gallagher, W. J. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
[4]   Colloquium:: Opportunities in nanomagnetism [J].
Bader, SD .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :1-15
[5]   Fabrication of nanostructures with long-range order using block copolymer lithography [J].
Cheng, JY ;
Ross, CA ;
Thomas, EL ;
Smith, HI ;
Vancso, GJ .
APPLIED PHYSICS LETTERS, 2002, 81 (19) :3657-3659
[6]   Angular dependence of the switching field in patterned magnetic elements [J].
Dittrich, R ;
Hu, GH ;
Schrefl, T ;
Thomson, T ;
Suess, D ;
Terris, BD ;
Fidler, J .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[7]   Formation of ordered nanoscale semiconductor dots by ion sputtering [J].
Facsko, S ;
Dekorsy, T ;
Koerdt, C ;
Trappe, C ;
Kurz, H ;
Vogt, A ;
Hartnagel, HL .
SCIENCE, 1999, 285 (5433) :1551-1553
[8]   Magnetization reversal in lithographically patterned sub-200-nm Co particle arrays [J].
Hao, Y ;
Castaño, FJ ;
Ross, CA ;
Vögeli, B ;
Walsh, ME ;
Smith, HI .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) :7989-7991
[9]   Growth and characterization of high density stoichiometric SiO2 dot arrays on Si through an anodic porous alumina template [J].
Kokonou, M. ;
Nassiopoulou, A. G. ;
Giannakopoulos, K. P. ;
Travlos, A. ;
Stoica, T. ;
Kennou, S. .
NANOTECHNOLOGY, 2006, 17 (09) :2146-2151
[10]  
Kondorskii E., 1937, PHYSIKALISCHE Z SOWJ, V11, P597