Strategy for node placement for penalized spline regression

被引:0
|
作者
Silva, Gabriel Edson S. [1 ]
Silva, Matheus C. [1 ]
Moura, Ernandes G. [1 ]
Garcia, Luiz Leonardo D. [1 ]
机构
[1] IFMA Inst Fed Maranhao, Sao Luis, MA, Brazil
来源
SIGMAE | 2019年 / 8卷 / 02期
关键词
Nonparametric regression; Semiparametric regression; Penalized splines; Knot placement;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new method for the selection of node sequences for P-spline regression curves. The method assumes that the data themselves determine the number and position of the nodes. Thus, this new node placement scheme assumes that nodes are a random variable across a thin grid of possible candidate nodes in the covariate range. Thus, through a grid search, we determine the knot that maximizes the correlation in each iteration. This new node placement scheme has obtained excellent results compared to conventional node allocation methods in a simulation study and, furthermore, our simulation study shows that this strategy makes the model more parsimonious. The results provide guidance in selecting the number of nodes not necessarily equidistant in a penalized spline regression model.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [41] Node Placement Strategy in Wireless Sensor Network
    Ahmad, Puteri Azwa
    Mahmuddin, M.
    Omar, Mohd Hasbullah
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2013, 5 (02) : 18 - 31
  • [42] Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression
    Islamiyati, A.
    Fatmawati
    Chamidah, N.
    2ND INTERNATIONAL CONFERENCE ON SCIENCE (ICOS), 2018, 979
  • [43] Penalized spline smoothing using Kaplan-Meier weights in semiparametric censored regression models
    Orbe, Jesus
    Virto, Jorge
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2022, 46 (01) : 95 - 114
  • [44] Asymptotic properties of penalized spline estimators
    Claeskens, Gerda
    Krivobokova, Tatyana
    Opsomer, Jean D.
    BIOMETRIKA, 2009, 96 (03) : 529 - 544
  • [45] Penalized isotonic regression
    Wu, Jiwen
    Meyer, Mary C.
    Opsomer, Jean D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 161 : 12 - 24
  • [46] Penalized polygram regression
    Jae-Hwan Jhong
    Kwan-Young Bak
    Ja-Yong Koo
    Journal of the Korean Statistical Society, 2022, 51 : 1161 - 1192
  • [47] Penalized Functional Regression
    Goldsmith, Jeff
    Bobb, Jennifer
    Crainiceanu, Ciprian M.
    Caffo, Brian
    Reich, Daniel
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 830 - 851
  • [48] Penalized polygram regression
    Jhong, Jae-Hwan
    Bak, Kwan-Young
    Koo, Ja-Yong
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (04) : 1161 - 1192
  • [49] Using Penalized Spline Regression to calculate Mean Trajectories including Confidence Intervals of Human Motion Data
    Carton, Daniel
    Turnwald, Annemarie
    Olszowy, Wiktor
    Buss, Martin
    Wollherr, Dirk
    2014 IEEE WORKSHOP ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS (ARSO), 2014, : 76 - 81
  • [50] Few-view tomography using roughness-penalized nonparametric regression and periodic spline interpolation
    La Rivière, PJ
    Pan, X
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1999, 46 (04) : 1121 - 1128