Strategy for node placement for penalized spline regression

被引:0
|
作者
Silva, Gabriel Edson S. [1 ]
Silva, Matheus C. [1 ]
Moura, Ernandes G. [1 ]
Garcia, Luiz Leonardo D. [1 ]
机构
[1] IFMA Inst Fed Maranhao, Sao Luis, MA, Brazil
来源
SIGMAE | 2019年 / 8卷 / 02期
关键词
Nonparametric regression; Semiparametric regression; Penalized splines; Knot placement;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new method for the selection of node sequences for P-spline regression curves. The method assumes that the data themselves determine the number and position of the nodes. Thus, this new node placement scheme assumes that nodes are a random variable across a thin grid of possible candidate nodes in the covariate range. Thus, through a grid search, we determine the knot that maximizes the correlation in each iteration. This new node placement scheme has obtained excellent results compared to conventional node allocation methods in a simulation study and, furthermore, our simulation study shows that this strategy makes the model more parsimonious. The results provide guidance in selecting the number of nodes not necessarily equidistant in a penalized spline regression model.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [31] Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression
    Göran Kauermann
    Timo Teuber
    Peter Flaschel
    Computational Economics, 2012, 39 : 409 - 427
  • [32] Non-parametric small area estimation using penalized spline regression
    Opsomer, J. D.
    Claeskens, G.
    Ranalli, M. G.
    Kauermann, G.
    Breidt, F. J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 265 - 286
  • [33] Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions
    Yoshida, Takuma
    STATISTICA NEERLANDICA, 2016, 70 (04) : 278 - 303
  • [34] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [35] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [36] A Note on Penalized Regression Spline Estimation in the Secondary Analysis of Case-Control Data
    Gazioglu S.
    Wei J.
    Jennings E.M.
    Carroll R.J.
    Statistics in Biosciences, 2013, 5 (2) : 250 - 260
  • [37] Semiparametric quantile Engel curves and expenditure elasticities: a penalized quantile regression spline approach
    Beatty, Timothy K. M.
    APPLIED ECONOMICS, 2009, 41 (12) : 1533 - 1542
  • [38] On the asymptotics of penalized spline smoothing
    Wang, Xiao
    Shen, Jinglai
    Ruppert, David
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 1 - 17
  • [39] Penalized B-spline estimator for regression functions using total variation penalty
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    Lee, Seong-Whan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 184 : 77 - 93
  • [40] Smoothing parameters of penalized spline nonparametric regression model using linear mixed model
    Saputro, D. R. S.
    Lukmawati, H.
    Widyaningsih, P.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243