Strategy for node placement for penalized spline regression

被引:0
作者
Silva, Gabriel Edson S. [1 ]
Silva, Matheus C. [1 ]
Moura, Ernandes G. [1 ]
Garcia, Luiz Leonardo D. [1 ]
机构
[1] IFMA Inst Fed Maranhao, Sao Luis, MA, Brazil
来源
SIGMAE | 2019年 / 8卷 / 02期
关键词
Nonparametric regression; Semiparametric regression; Penalized splines; Knot placement;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new method for the selection of node sequences for P-spline regression curves. The method assumes that the data themselves determine the number and position of the nodes. Thus, this new node placement scheme assumes that nodes are a random variable across a thin grid of possible candidate nodes in the covariate range. Thus, through a grid search, we determine the knot that maximizes the correlation in each iteration. This new node placement scheme has obtained excellent results compared to conventional node allocation methods in a simulation study and, furthermore, our simulation study shows that this strategy makes the model more parsimonious. The results provide guidance in selecting the number of nodes not necessarily equidistant in a penalized spline regression model.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [21] Quadratic Programming and Penalized Regression
    Smith, Andrew D. A. C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (07) : 1363 - 1372
  • [22] A NOTE ON A NONPARAMETRIC REGRESSION TEST THROUGH PENALIZED SPLINES
    Chen, Huaihou
    Wang, Yuanjia
    Li, Runze
    Shear, Katherine
    STATISTICA SINICA, 2014, 24 (03) : 1143 - 1160
  • [23] Some theory for penalized spline generalized additive models
    Aerts, M
    Claeskens, G
    Wand, MP
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 103 (1-2) : 455 - 470
  • [24] Some asymptotic results on generalized penalized spline smoothing
    Kauermann, Goran
    Krivobokova, Tatyana
    Fahrmeir, Ludwig
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 487 - 503
  • [25] Enhancing Adaptive Spline Regression: An Evolutionary Approach to Optimal Knot Placement and Smoothing Parameter Selection
    Thielmann, Anton
    Kneib, Thomas
    Saefken, Benjamin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025,
  • [26] Penalized function-on-function regression
    Ivanescu, Andrada E.
    Staicu, Ana-Maria
    Scheipl, Fabian
    Greven, Sonja
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 539 - 568
  • [27] Penalized function-on-function regression
    Andrada E. Ivanescu
    Ana-Maria Staicu
    Fabian Scheipl
    Sonja Greven
    Computational Statistics, 2015, 30 : 539 - 568
  • [28] Penalized versions of functional PLS regression
    Aguilera, A. M.
    Aguilera-Morillo, M. C.
    Preda, C.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 80 - 92
  • [29] A penalized spline estimator for fixed effects panel data models
    Peter Pütz
    Thomas Kneib
    AStA Advances in Statistical Analysis, 2018, 102 : 145 - 166
  • [30] Generalized profiling estimation for global and adaptive penalized spline smoothing
    Cao, Jiguo
    Ramsay, James O.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (07) : 2550 - 2562