Strategy for node placement for penalized spline regression

被引:0
|
作者
Silva, Gabriel Edson S. [1 ]
Silva, Matheus C. [1 ]
Moura, Ernandes G. [1 ]
Garcia, Luiz Leonardo D. [1 ]
机构
[1] IFMA Inst Fed Maranhao, Sao Luis, MA, Brazil
来源
SIGMAE | 2019年 / 8卷 / 02期
关键词
Nonparametric regression; Semiparametric regression; Penalized splines; Knot placement;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new method for the selection of node sequences for P-spline regression curves. The method assumes that the data themselves determine the number and position of the nodes. Thus, this new node placement scheme assumes that nodes are a random variable across a thin grid of possible candidate nodes in the covariate range. Thus, through a grid search, we determine the knot that maximizes the correlation in each iteration. This new node placement scheme has obtained excellent results compared to conventional node allocation methods in a simulation study and, furthermore, our simulation study shows that this strategy makes the model more parsimonious. The results provide guidance in selecting the number of nodes not necessarily equidistant in a penalized spline regression model.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [1] On knot placement for penalized spline regression
    Yao, Fang
    Lee, Thomas C. M.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (03) : 259 - 267
  • [2] On knot placement for penalized spline regression
    Fang Yao
    Thomas C. M. Lee
    Journal of the Korean Statistical Society, 2008, 37 : 259 - 267
  • [3] Bootstrapping for Penalized Spline Regression
    Kauermann, Goeran
    Claeskens, Gerda
    Opsomer, J. D.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 126 - 146
  • [4] Examination of Influential Observations in Penalized Spline Regression
    Turkan, Semra
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1454 - 1457
  • [5] Penalized spline approaches for functional logit regression
    Carmen Aguilera-Morillo, M.
    Aguilera, Ana M.
    Escabias, Manuel
    Valderrama, Mariano J.
    TEST, 2013, 22 (02) : 251 - 277
  • [6] Penalized spline approaches for functional logit regression
    M. Carmen Aguilera-Morillo
    Ana M. Aguilera
    Manuel Escabias
    Mariano J. Valderrama
    TEST, 2013, 22 : 251 - 277
  • [7] Asymptotics for penalized spline estimators in quantile regression
    Yoshida, Takuma
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4815 - 4834
  • [8] Data-driven selection of the spline dimension in penalized spline regression
    Kauermann, Goeran
    Opsomer, Jean D.
    BIOMETRIKA, 2011, 98 (01) : 225 - 230
  • [9] Penalized I-spline monotone regression estimation
    Choi, Junsouk
    Lee, JungJun
    Jhong, Jae-Hwan
    Koo, Ja-Yong
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3714 - 3732
  • [10] Bayesian analysis for penalized spline regression using WinBUGS
    Crainiceanu, CM
    Ruppert, D
    Wand, MP
    JOURNAL OF STATISTICAL SOFTWARE, 2005, 14 (14):