Separating invariants and finite reflection groups

被引:26
作者
Dufresne, Emilie [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
Invariant theory; Separating invariants; Finite groups; Reflections; Polynomial ring; Bireflections; Complete intersection ring;
D O I
10.1016/j.aim.2009.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A separating algebra is, roughly speaking, a subalgebra of the ring of invariants whose elements distinguish between any two orbits that can be distinguished using invariants. In this paper, we introduce a geometric notion of separating algebra. This allows us to prove that only groups generated by reflections may have polynomial separating algebras, and only groups generated by bireflections may have complete intersection separating algebras. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1979 / 1989
页数:11
相关论文
共 22 条
[11]  
Grothendieck A., 1960, Publications Mathematiques de l'IHgS, P228
[12]   COMPLETE INTERSECTIONS AND CONNECTEDNESS [J].
HARTSHORNE, R .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (03) :497-&
[13]  
Hartshorne R., 1977, ALGEBRAIC GEOM, V52
[14]  
Iversen B., 1973, LECT NOTES MATH, V310
[15]   FINITE LINEAR-GROUPS WHOSE RING OF INVARIANTS IS A COMPLETE INTERSECTION [J].
KAC, V ;
WATANABE, KI .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (02) :221-223
[16]   Computing invariants of reductive groups in positive characteristic [J].
Kemper, G .
TRANSFORMATION GROUPS, 2003, 8 (02) :159-176
[17]  
Kemper G., 2000, TRANSFORM GROUPS, V5, P1
[18]   Separating invariants [J].
Kemper, Gregor .
JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (09) :1212-1222
[19]  
Matsumura H., 1989, CAMBRIDGE STUD ADV M, V8
[20]  
Serre J.P., 1968, C ALG PAR 1967 SECR, P11