Separating invariants and finite reflection groups

被引:26
作者
Dufresne, Emilie [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
关键词
Invariant theory; Separating invariants; Finite groups; Reflections; Polynomial ring; Bireflections; Complete intersection ring;
D O I
10.1016/j.aim.2009.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A separating algebra is, roughly speaking, a subalgebra of the ring of invariants whose elements distinguish between any two orbits that can be distinguished using invariants. In this paper, we introduce a geometric notion of separating algebra. This allows us to prove that only groups generated by reflections may have polynomial separating algebras, and only groups generated by bireflections may have complete intersection separating algebras. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1979 / 1989
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 1961, I HAUTES ETUDEST SCI
[2]  
[Anonymous], 1964, Publications Mathematiques de l'IHES, P259, DOI 10.1007/BF02684747
[3]   Rings of invariants of certain p-groups over the field Fp [J].
Campbell, HEA ;
Hughes, IP .
JOURNAL OF ALGEBRA, 1999, 211 (02) :549-561
[4]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[5]   REALIZATION OF POLYNOMIAL ALGEBRAS AS COHOMOLOGY RINGS [J].
CLARK, A ;
EWING, J .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 50 (02) :425-434
[6]  
Derksen H., 2002, ENCY MATH SCI, V130
[7]   Typical separating invariants [J].
Domokos, M. .
TRANSFORMATION GROUPS, 2007, 12 (01) :49-63
[8]   Polarization of separating invariants [J].
Draisma, Jan ;
Kemper, Gregor ;
Wehlau, David .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (03) :556-571
[9]  
DUFRESNE E, 2008, THESIS QUEENS U KING
[10]  
GORDEEV NL, 1982, ZAP NAUCHN SEM LENIN, V114, P120