Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities

被引:78
作者
Lee, Eun-Ok
Lee, Hyo-Jung
Hwang, Hwa-Soo
Ahn, Kyoo-Seok
Chae, Chanhee
Kang, Kyung-Sun
Lu, Junxuan
Kim, Sung-Hoon
机构
[1] Kyung Hee Univ, Grad Sch E W Med Sci, Yongin 449701, South Korea
[2] Seoul Natl Univ, Coll Vet Med, Seoul 151742, South Korea
[3] Univ Minnesota, Hormel Inst, Austin, MN 55912 USA
[4] Kyung Hee Univ, Coll Oriental Med, Seoul 131701, South Korea
关键词
D O I
10.1093/carcin/bgl055
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Vitis amurensis Rupr. (Vitaceae) has long been used in Chinese/Oriental herbal medicine for the treatment of cancer, but its active compounds and mechanisms of action have not been well studied. To this end, we isolated from its root heyneanol A (HA), which is a tetramer of resveratrol (RES), and established the in vivo antitumor activity of HA using the mouse Lewis lung carcinoma (LLC) model. We administered HA and RES by daily intraperitonial injection to C57BL/6 mice that were subcutaneously inoculated with LLC cells. HA dose-dependently decreased tumor growth without any adverse effect on body weight and seemed more potent than RES. The tumor inhibitory effects were accompanied by a marked increase in tumor cell apoptosis detected by cleaved caspase-3 and TUNEL assays and decreased tumor cell proliferation index and tumor microvessel density, supporting the involvement of apoptotic and anti-angiogenic activities in the anticancer effects. We next investigated the cellular and molecular processes that mediate the apoptosis and anti-angiogenesis effects using cell culture models. Mechanistically, treatment of LLC cells in vitro with HA or RES significantly increased apoptotic cells. Both HA- and RES-induced cleavage of caspase-9 and caspase-3 and PARP were completely blocked by a pan caspase inhibitor, Z-VAD-FMK. In addition, HA and RES suppressed the basic fibroblast growth factor (bFGF)-induced proliferation and capillary differentiation of human umbilical vein endothelial cells, and inhibited the binding of bFGF to its receptor in a test tube assay and the bFGF-induced vascularization of Matrigel plugs in vivo. Remarkably, HA was fairly stable in cell culture medium and did not undergo intracellular conversion to RES. Therefore, HA is an active anticancer compound that induces caspase-mediated cancer cell apoptosis and inhibits angiogenesis rivaling the potency of RES and merits further evaluation for cancer chemoprevention.
引用
收藏
页码:2059 / 2069
页数:11
相关论文
共 42 条
[1]  
ALESSANDRI G, 1987, CANCER RES, V47, P4243
[2]   Tumorigenesis and the angiogenic switch [J].
Bergers, G ;
Benjamin, LE .
NATURE REVIEWS CANCER, 2003, 3 (06) :401-410
[3]   Biological effects of resveratrol [J].
Bhat, KPL ;
Kosmeder, JW ;
Pezzuto, JM .
ANTIOXIDANTS & REDOX SIGNALING, 2001, 3 (06) :1041-1064
[4]   Wine and resveratrol: mechanisms of cancer prevention? [J].
Bianchini, F ;
Vainio, H .
EUROPEAN JOURNAL OF CANCER PREVENTION, 2003, 12 (05) :417-425
[5]   Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoclast differentiation [J].
Boissy, P ;
Andersen, TL ;
Abdallah, BM ;
Kassem, M ;
Plesner, T ;
Delaissé, JM .
CANCER RESEARCH, 2005, 65 (21) :9943-9952
[6]   Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model [J].
Carbó, N ;
Costelli, P ;
Baccino, FM ;
López-Soriano, FJ ;
Argilés, JM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 254 (03) :739-743
[7]   INHIBITION OF THE METASTATIC SPREAD AND GROWTH OF B16-BL6 MURINE MELANOMA BY A SYNTHETIC MATRIX METALLOPROTEINASE INHIBITOR [J].
CHIRIVI, RGS ;
GAROFALO, A ;
CRIMMIN, MJ ;
BAWDEN, LJ ;
STOPPACCIARO, A ;
BROWN, PD ;
GIAVAZZI, R .
INTERNATIONAL JOURNAL OF CANCER, 1994, 58 (03) :460-464
[8]  
Clément MV, 1998, BLOOD, V92, P996
[9]   Resveratrol: Preventing properties against vascular alterations and ageing [J].
Delmas, D ;
Jannin, B ;
Latruffe, N .
MOLECULAR NUTRITION & FOOD RESEARCH, 2005, 49 (05) :377-395
[10]  
Drabkin DL, 1932, J BIOL CHEM, V98, P719