Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps

被引:33
作者
Abdelrahman, Ahmed [1 ,3 ]
Mukai, Tetsuya [2 ]
Haeffner, Hartmut [1 ]
Byrnes, Tim [3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[3] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[4] Grad Univ Adv Studies Sokendai, Hayama, Kanagawa 2400193, Japan
关键词
SINGLE-PHOTON; QUANTUM; ENTANGLEMENT; CAVITY; MANIPULATION; NM;
D O I
10.1364/OE.22.003501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given. (C) 2014 Optical Society of America
引用
收藏
页码:3501 / 3513
页数:13
相关论文
共 38 条
[1]   Asymmetrical two-dimensional magnetic lattices for ultracold atoms [J].
Abdelrahman, A. ;
Vasiliev, M. ;
Alameh, K. ;
Hannaford, P. .
PHYSICAL REVIEW A, 2010, 82 (01)
[2]   Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip [J].
Boehi, Pascal ;
Riedel, Max F. ;
Hoffrogge, Johannes ;
Reichel, Jakob ;
Haensch, TheodorW. ;
Treutlein, Philipp .
NATURE PHYSICS, 2009, 5 (08) :592-597
[3]   Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity [J].
Boozer, A. D. ;
Boca, A. ;
Miller, R. ;
Northup, T. E. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[4]   Cavity QED with a Bose-Einstein condensate [J].
Brennecke, Ferdinand ;
Donner, Tobias ;
Ritter, Stephan ;
Bourdel, Thomas ;
Koehl, Michael ;
Esslinger, Tilman .
NATURE, 2007, 450 (7167) :268-U8
[5]  
Byrnes T., 2012, WORLD ACAD SCI ENG T, V63, P542
[6]   Fractality and macroscopic entanglement in two-component Bose-Einstein condensates [J].
Byrnes, Tim .
PHYSICAL REVIEW A, 2013, 88 (02)
[7]   Macroscopic quantum computation using Bose-Einstein condensates [J].
Byrnes, Tim ;
Wen, Kai ;
Yamamoto, Yoshihisa .
PHYSICAL REVIEW A, 2012, 85 (04)
[8]   Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip [J].
Colombe, Yves ;
Steinmetz, Tilo ;
Dubois, Guilhem ;
Linke, Felix ;
Hunger, David ;
Reichel, Jakob .
NATURE, 2007, 450 (7167) :272-U9
[9]   Observation of Entanglement between Itinerant Microwave Photons and a Superconducting Qubit [J].
Eichler, C. ;
Lang, C. ;
Fink, J. M. ;
Govenius, J. ;
Filipp, S. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[10]   Fully permanent magnet atom chip for Bose-Einstein condensation [J].
Fernholz, T. ;
Gerritsma, R. ;
Whitlock, S. ;
Barb, I. ;
Spreeuw, R. J. C. .
PHYSICAL REVIEW A, 2008, 77 (03)