Long-time Asymptotics of the One-dimensional Damped Nonlinear Klein-Gordon Equation

被引:10
作者
Cote, Raphael [1 ]
Martel, Yvan [2 ]
Yuan, Xu [2 ]
机构
[1] Univ Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
[2] Inst Polytech Paris, CNRS, Ecole Polytech, CMLS, F-91128 Palaiseau, France
关键词
SEMILINEAR WAVE-EQUATION; CLASSIFICATION; CONSTRUCTION; EXISTENCE; GKDV;
D O I
10.1007/s00205-020-01605-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the one-dimensional nonlinear damped Klein-Gordon equation partial derivative(2)(t) u + 2 alpha partial derivative(t)u - partial derivative(2)(x) u + u - |u|(p-1)u = 0 on R x R, with alpha > 0 and p > 2, we prove that any global finite energy solution either converges to 0 or behaves asymptotically as t -> infinity as the sum of K >= 1 decoupled solitary waves. In the multi-soliton case K >= 2, the solitary waves have alternate signs and their distances are of order log t.
引用
收藏
页码:1837 / 1874
页数:38
相关论文
共 19 条
[1]   LONG TIME DYNAMICS FOR DAMPED KLEIN-GORDON EQUATIONS [J].
Burq, Nicolas ;
Raugel, Genevieve ;
Schlag, Wilhelm .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (06) :1447-1498
[2]   UNIFORM ESTIMATES FOR SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS [J].
CAZENAVE, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 60 (01) :36-55
[3]  
Cazenave T., 1998, An Introduction to Semilinear Evolution Equations, V13
[4]   On the Soliton Resolution for Equivariant Wave Maps to the Sphere [J].
Cote, R. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (11) :1946-2004
[5]  
Cote R., ARXIV190809527
[6]   MULTI-SOLITONS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
Cote, Raphael ;
Munoz, Claudio .
FORUM OF MATHEMATICS SIGMA, 2014, 2
[7]   Construction of a Multisoliton Blowup Solution to the Semilinear Wave Equation in One Space Dimension [J].
Cote, Raphael ;
Zaag, Hatem .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (10) :1541-1581
[8]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[9]   SOLITON RESOLUTION ALONG A SEQUENCE OF TIMES FOR THE FOCUSING ENERGY CRITICAL WAVE EQUATION [J].
Duyckaerts, Thomas ;
Jia, Hao ;
Kenig, Carlos ;
Merle, Frank .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (04) :798-862
[10]  
Duyckaerts T, 2013, CAMB J MATH, V1, P75