Experimental performance evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation

被引:20
作者
Chiuta, Steven [1 ,2 ]
Everson, Raymond C. [1 ,2 ]
Neomagus, Hein W. J. P. [1 ,2 ]
Bessarabov, Dmitri G. [1 ]
机构
[1] North West Univ, HySA Infrastruct Ctr Competence, Fac Engn, ZA-2520 Potchefstroom, South Africa
[2] North West Univ, Sch Chem & Minerals Engn, Fac Engn, ZA-2520 Potchefstroom, South Africa
关键词
Ammonia decomposition; Microchannel reactor; Hydrogen generation; Fuel cells; Performance evaluation; COX-FREE HYDROGEN; MINIATURIZED PRODUCTION; DECOMPOSITION; REACTOR; MICROREACTORS; CATALYSTS; MONOLITH; SYSTEM;
D O I
10.1016/j.ijhydene.2014.02.176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microchannel reactors appear attractive as integral parts of fuel processors to generate hydrogen (H-2) for portable and distributed fuel cell applications. The work described in this paper evaluates, characterizes, and demonstrates miniaturized H-2 production in a stand-alone ammonia-fuelled microchannel reformer. The performance of the microchannel reformer is investigated as a function of reaction temperature (450-700 degrees C) and gas-hourly-space-velocity (6520-32,600 Nml g(cat)(-1) h(-1)). The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH3 conversion at 32,600 Nml g(cat)(-1) h(-1) and 700 degrees C to generate an estimated fuel cell power output of 5.7 W-e and power density of 16 kW(e) L-1 (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm(-1)) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H-2 to fuel cell systems. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7225 / 7235
页数:11
相关论文
共 41 条
[21]   Towards mass production of microstructured fuel processors for application in future distributed energy generation systems: A review of recent progress at IMM [J].
O'Connell, M. ;
Kolb, G. ;
Schelhaas, K. -P. ;
Wichert, M. ;
Tiemann, D. ;
Pennemann, H. ;
Zapf, R. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2012, 90 (1A) :11-18
[22]   Development of a soldier-portable fuel cell power system Part I: A bread-board methanol fuel processor [J].
Palo, DR ;
Holladay, JD ;
Rozmiarek, RT ;
Guzman-Leong, CE ;
Wang, Y ;
Hu, JL ;
Chin, YH ;
Dagle, RA ;
Baker, EG .
JOURNAL OF POWER SOURCES, 2002, 108 (1-2) :28-34
[23]   Development of microchannel methanol steam reformer [J].
Park, GG ;
Seo, DJ ;
Park, SH ;
Yoon, YG ;
Kim, CS ;
Yoon, WL .
CHEMICAL ENGINEERING JOURNAL, 2004, 101 (1-3) :87-92
[24]  
POWELL M, 2002, P 23 ARM SCI C ORL F
[25]  
Powell MR, 2002, Patent, Patent No. [WO 02/071451 A2, 02071451A2]
[26]  
Prud'homme M., 2012, P 38 IFA ENL COUNC M
[27]   Fabrication of microchannels on stainless steel by wet chemical etching [J].
Rao, P. Nageswara ;
Kunzru, Deepak .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (12) :N99-N106
[28]  
Rockward T., 2012, HYDROGEN FUEL QUALIT
[29]   Microchannel reactors for fast periodic operation: the catalytic dehydration of isopropanol [J].
Rouge, A ;
Spoetzl, B ;
Gebauer, K ;
Schenk, R ;
Renken, A .
CHEMICAL ENGINEERING SCIENCE, 2001, 56 (04) :1419-1427
[30]   35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor [J].
Son, In-Hyuk ;
Shin, Woo-Cheol ;
Lee, Yong-Kul ;
Lee, Sung-Chul ;
Ahn, Jin-Gu ;
Han, Sang-Il ;
Kweon, Ho-Jin ;
Kim, Ju-Yong ;
Kim, Moon-Chan ;
Park, Jun-Yong .
JOURNAL OF POWER SOURCES, 2008, 185 (01) :171-178