Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes

被引:127
作者
Yeap, Leng-Siew [1 ,2 ]
Hwang, Joyce K. [1 ,2 ]
Du, Zhou [1 ,2 ]
Meyers, Robin M. [1 ,2 ]
Meng, Fei-Long [1 ,2 ]
Jakubauskaite, Agne [1 ,2 ]
Liu, Mengyuan [1 ,2 ]
Mani, Vinidhra [1 ,2 ]
Neuberg, Donna [3 ]
Kepler, Thomas B. [4 ]
Wang, Jing H. [1 ,2 ]
Alt, Frederick W. [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Boston Childrens Hosp, Howard Hughes Med Inst,Program Cellular & Mol Med, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02215 USA
[4] Boston Univ, Sch Med, Dept Microbiol, Boston, MA 02215 USA
关键词
CLASS SWITCH RECOMBINATION; SOMATIC HYPERMUTATION; REGION; DELETIONS; TRANSCRIPTION; ACCUMULATION; INSERTIONS; HOTSPOTS;
D O I
10.1016/j.cell.2015.10.042
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In activated B lymphocytes, AID initiates antibody variable (V) exon somatic hypermutation (SHM) for affinity maturation in germinal centers (GCs) and IgH switch (S) region DNA breaks (DSBs) for class-switch recombination (CSR). To resolve long-standing questions, we have developed an in vivo assay to study AID targeting of passenger sequences replacing a V exon. First, we find AID targets SHM hot-spots within V exon and S region passengers at similar frequencies and that the normal SHM process frequently generates deletions, indicating that SHM and CSR employ the same mechanism. Second, AID mutates targets in diverse non-Ig passengers in GC B cells at levels similar to those of V exons, definitively establishing the V exon location as "privileged" for SHM. Finally, Peyer's patch GC B cells generate a reservoir of V exons that are highly mutated before selection for affinity maturation. We discuss the implications of these findings for harnessing antibody diversification mechanisms.
引用
收藏
页码:1124 / 1137
页数:14
相关论文
共 45 条
[1]   Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System [J].
Alt, Frederick W. ;
Zhang, Yu ;
Meng, Fei-Long ;
Guo, Chunguang ;
Schwer, Bjoern .
CELL, 2013, 152 (03) :417-429
[2]   DISCRIMINATING INTRINSIC AND ANTIGEN-SELECTED MUTATIONAL HOTSPOTS IN IMMUNOGLOBULIN V-GENES [J].
BETZ, AG ;
NEUBERGER, MS ;
MILSTEIN, C .
IMMUNOLOGY TODAY, 1993, 14 (08) :405-411
[3]   PASSENGER TRANSGENES REVEAL INTRINSIC SPECIFICITY OF THE ANTIBODY HYPERMUTATION MECHANISM - CLUSTERING, POLARITY, AND SPECIFIC HOT-SPOTS [J].
BETZ, AG ;
RADA, C ;
PANNELL, R ;
MILSTEIN, C ;
NEUBERGER, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (06) :2385-2388
[4]   Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity [J].
Briney, B. S. ;
Willis, J. R. ;
Crowe, J. E., Jr. .
GENES AND IMMUNITY, 2012, 13 (07) :523-529
[5]   Targeting of Somatic Hypermutation by immunoglobulin Enhancer and Enhancer-Like Sequences [J].
Buerstedde, Jean-Marie ;
Alinikula, Jukka ;
Arakawa, Hiroshi ;
McDonald, Jessica J. ;
Schatz, David G. .
PLOS BIOLOGY, 2014, 12 (04)
[6]   B cell receptor signal strength determines B cell fate [J].
Casola, S ;
Otipoby, KL ;
Alimzhanov, M ;
Humme, S ;
Uyttersprot, N ;
Kutok, JL ;
Carroll, MC ;
Rajewsky, K .
NATURE IMMUNOLOGY, 2004, 5 (03) :317-327
[7]   AIDing antibody diversity by error-prone mismatch repair [J].
Chahwan, Richard ;
Edelmann, Winfried ;
Scharff, Matthew D. ;
Roa, Sergio .
SEMINARS IN IMMUNOLOGY, 2012, 24 (04) :293-300
[8]   Molecular mechanisms of antibody somatic hypermutation [J].
Di Nola, Javier M. ;
Neuberger, Michael S. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2007, 76 :1-22
[9]  
Dorner T, 1997, J IMMUNOL, V158, P2779
[10]   ANALYSIS OF SOMATIC HYPERMUTATION IN MOUSE PEYER PATCHES USING IMMUNOGLOBULIN-KAPPA LIGHT-CHAIN TRANSGENES [J].
GONZALEZFERNANDEZ, A ;
MILSTEIN, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :9862-9866